{"title":"计数结果的潜在增长模型:规范、评估和解释","authors":"Daniel Seddig","doi":"10.1080/10705511.2023.2175684","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the Poisson or negative binomial distribution and their zero-inflated extensions to account for excess zero counts. This article demonstrates how to specify, evaluate, and interpret LGMs for count outcomes using the Mplus program in the structural equation modeling framework. The foundations of LGMs for count outcomes are discussed and illustrated using empirical count data on self-reported criminal offenses of adolescents (<i>N</i> = 1,664; age 15–18). Annotated syntax and output are presented for all model variants. A negative binomial LGM is shown to best fit the crime growth process, outperforming Poisson, zero-inflated, and hurdle LGMs.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"47 16","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Growth Models for Count Outcomes: Specification, Evaluation, and Interpretation\",\"authors\":\"Daniel Seddig\",\"doi\":\"10.1080/10705511.2023.2175684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b></p><p>The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the Poisson or negative binomial distribution and their zero-inflated extensions to account for excess zero counts. This article demonstrates how to specify, evaluate, and interpret LGMs for count outcomes using the Mplus program in the structural equation modeling framework. The foundations of LGMs for count outcomes are discussed and illustrated using empirical count data on self-reported criminal offenses of adolescents (<i>N</i> = 1,664; age 15–18). Annotated syntax and output are presented for all model variants. A negative binomial LGM is shown to best fit the crime growth process, outperforming Poisson, zero-inflated, and hurdle LGMs.</p>\",\"PeriodicalId\":21964,\"journal\":{\"name\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"volume\":\"47 16\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/10705511.2023.2175684\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2023.2175684","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Latent Growth Models for Count Outcomes: Specification, Evaluation, and Interpretation
Abstract
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the Poisson or negative binomial distribution and their zero-inflated extensions to account for excess zero counts. This article demonstrates how to specify, evaluate, and interpret LGMs for count outcomes using the Mplus program in the structural equation modeling framework. The foundations of LGMs for count outcomes are discussed and illustrated using empirical count data on self-reported criminal offenses of adolescents (N = 1,664; age 15–18). Annotated syntax and output are presented for all model variants. A negative binomial LGM is shown to best fit the crime growth process, outperforming Poisson, zero-inflated, and hurdle LGMs.
期刊介绍:
Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.