枯草芽孢杆菌的适应性实验室进化以克服蒸馏器干燥谷物中木质纤维素水解物的毒性(DDGS)

IF 3.7 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic Engineering Communications Pub Date : 2023-06-01 DOI:10.1016/j.mec.2023.e00223
Jasper L.S.P. Driessen , Josefin Johnsen , Ivan Pogrebnyakov , Elsayed T.T. Mohamed , Solange I. Mussatto , Adam M. Feist , Sheila I. Jensen , Alex T. Nielsen
{"title":"枯草芽孢杆菌的适应性实验室进化以克服蒸馏器干燥谷物中木质纤维素水解物的毒性(DDGS)","authors":"Jasper L.S.P. Driessen ,&nbsp;Josefin Johnsen ,&nbsp;Ivan Pogrebnyakov ,&nbsp;Elsayed T.T. Mohamed ,&nbsp;Solange I. Mussatto ,&nbsp;Adam M. Feist ,&nbsp;Sheila I. Jensen ,&nbsp;Alex T. Nielsen","doi":"10.1016/j.mec.2023.e00223","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial tolerance to toxic compounds formed during biomass pretreatment is a significant challenge to produce bio-based products from lignocellulose cost effectively. Rational engineering can be problematic due to insufficient prerequisite knowledge of tolerance mechanisms. Therefore, adaptive laboratory evolution was applied to obtain 20 tolerant lineages of <em>Bacillus subtilis</em> strains able to utilize Distiller's Dried Grains with Solubles-derived (DDGS) hydrolysate. Evolved strains showed both improved growth performance and retained heterologous enzyme production using 100% hydrolysate-based medium, whereas growth of the starting strains was essentially absent. Whole-genome resequencing revealed that evolved isolates acquired mutations in the global regulator c<em>odY</em> in 15 of the 19 sequenced isolates. Furthermore, mutations in genes related to oxidative stress (<em>katA</em>, <em>perR</em>) and flagella function appeared in both tolerance and control evolution experiments without toxic compounds. Overall, tolerance adaptive laboratory evolution yielded strains able to utilize DDGS-hydrolysate to produce enzymes and hence proved to be a valuable tool for the valorization of lignocellulose.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"16 ","pages":"Article e00223"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive laboratory evolution of Bacillus subtilis to overcome toxicity of lignocellulosic hydrolysate derived from Distiller's dried grains with solubles (DDGS)\",\"authors\":\"Jasper L.S.P. Driessen ,&nbsp;Josefin Johnsen ,&nbsp;Ivan Pogrebnyakov ,&nbsp;Elsayed T.T. Mohamed ,&nbsp;Solange I. Mussatto ,&nbsp;Adam M. Feist ,&nbsp;Sheila I. Jensen ,&nbsp;Alex T. Nielsen\",\"doi\":\"10.1016/j.mec.2023.e00223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microbial tolerance to toxic compounds formed during biomass pretreatment is a significant challenge to produce bio-based products from lignocellulose cost effectively. Rational engineering can be problematic due to insufficient prerequisite knowledge of tolerance mechanisms. Therefore, adaptive laboratory evolution was applied to obtain 20 tolerant lineages of <em>Bacillus subtilis</em> strains able to utilize Distiller's Dried Grains with Solubles-derived (DDGS) hydrolysate. Evolved strains showed both improved growth performance and retained heterologous enzyme production using 100% hydrolysate-based medium, whereas growth of the starting strains was essentially absent. Whole-genome resequencing revealed that evolved isolates acquired mutations in the global regulator c<em>odY</em> in 15 of the 19 sequenced isolates. Furthermore, mutations in genes related to oxidative stress (<em>katA</em>, <em>perR</em>) and flagella function appeared in both tolerance and control evolution experiments without toxic compounds. Overall, tolerance adaptive laboratory evolution yielded strains able to utilize DDGS-hydrolysate to produce enzymes and hence proved to be a valuable tool for the valorization of lignocellulose.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":\"16 \",\"pages\":\"Article e00223\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030123000068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030123000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物对生物质预处理过程中形成的有毒化合物的耐受性是从木质纤维素生产生物基产品的一个重大挑战。由于对公差机制的先决条件知识不足,理性工程可能会出现问题。因此,应用适应性实验室进化获得了20个枯草芽孢杆菌菌株的耐受谱系,这些菌株能够利用具有可溶物衍生(DDGS)水解物的Distiller’s Dried Grains。使用100%基于水解产物的培养基,进化菌株显示出提高的生长性能和保留的异源酶产量,而起始菌株基本上没有生长。全基因组重测序显示,进化的分离株在19个测序的分离株中的15个中获得了全球调节因子codY的突变。此外,在没有有毒化合物的耐受和控制进化实验中,都出现了与氧化应激(katA、perR)和鞭毛功能相关的基因突变。总体而言,耐受性适应性实验室进化产生了能够利用DDGS水解物生产酶的菌株,因此被证明是木质纤维素增值的有价值工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive laboratory evolution of Bacillus subtilis to overcome toxicity of lignocellulosic hydrolysate derived from Distiller's dried grains with solubles (DDGS)

Microbial tolerance to toxic compounds formed during biomass pretreatment is a significant challenge to produce bio-based products from lignocellulose cost effectively. Rational engineering can be problematic due to insufficient prerequisite knowledge of tolerance mechanisms. Therefore, adaptive laboratory evolution was applied to obtain 20 tolerant lineages of Bacillus subtilis strains able to utilize Distiller's Dried Grains with Solubles-derived (DDGS) hydrolysate. Evolved strains showed both improved growth performance and retained heterologous enzyme production using 100% hydrolysate-based medium, whereas growth of the starting strains was essentially absent. Whole-genome resequencing revealed that evolved isolates acquired mutations in the global regulator codY in 15 of the 19 sequenced isolates. Furthermore, mutations in genes related to oxidative stress (katA, perR) and flagella function appeared in both tolerance and control evolution experiments without toxic compounds. Overall, tolerance adaptive laboratory evolution yielded strains able to utilize DDGS-hydrolysate to produce enzymes and hence proved to be a valuable tool for the valorization of lignocellulose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic Engineering Communications
Metabolic Engineering Communications Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
13.30
自引率
1.90%
发文量
22
审稿时长
18 weeks
期刊介绍: Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.
期刊最新文献
Tuning the performance of a TphR-based terephthalate biosensor with a design of experiments approach Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates Production of (R)-citramalate by engineered Saccharomyces cerevisiae Engineering thioesterase as a driving force for novel itaconate production via its degradation scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1