Mark Seger , Fakhriyya Mammadova , Melany Villegas-Valencia , Bárbara Bastos de Freitas , Clarissa Chang , Iona Isachsen , Haley Hemstreet , Fatimah Abualsaud , Malia Boring , Peter J. Lammers , Kyle J. Lauersen
{"title":"工程化酮类胡萝卜素在多亲性红微藻Cyanidoschyzon merolae 10D中的生物合成","authors":"Mark Seger , Fakhriyya Mammadova , Melany Villegas-Valencia , Bárbara Bastos de Freitas , Clarissa Chang , Iona Isachsen , Haley Hemstreet , Fatimah Abualsaud , Malia Boring , Peter J. Lammers , Kyle J. Lauersen","doi":"10.1016/j.mec.2023.e00226","DOIUrl":null,"url":null,"abstract":"<div><p>The polyextremophilic Cyanidiophyceae are eukaryotic red microalgae with promising biotechnological properties arising from their low pH and elevated temperature requirements which can minimize culture contamination at scale. <em>Cyanidioschyzon merolae</em> 10D is a cell wall deficient species with a fully sequenced genome that is amenable to nuclear transgene integration by targeted homologous recombination. <em>C. merolae</em> maintains a minimal carotenoid profile and here, we sought to determine its capacity for ketocarotenoid accumulation mediated by heterologous expression of a green algal β-carotene ketolase (BKT) and hydroxylase (CHYB). To achieve this, a synthetic transgene expression cassette system was built to integrate and express <em>Chlamydomonas reinhardtii</em> (Cr) sourced enzymes by fusing native <em>C. merolae</em> transcription, translation and chloroplast targeting signals to codon-optimized coding sequences. Chloramphenicol resistance was used to select for the integration of synthetic linear DNAs into a neutral site within the host genome. <em>Cr</em>BKT expression caused accumulation of canthaxanthin and adonirubin as major carotenoids while co-expression of <em>Cr</em>BKT with <em>Cr</em>CHYB generated astaxanthin as the major carotenoid in <em>C. merolae</em>. Unlike green algae and plants, ketocarotenoid accumulation in <em>C. merolae</em> did not reduce total carotenoid contents, but chlorophyll <em>a</em> reduction was observed. Light intensity affected global ratios of all pigments but not individual pigment compositions and phycocyanin contents were not markedly different between parental strain and transformants. Continuous illumination was found to encourage biomass accumulation and all strains could be cultivated in simulated summer conditions from two different extreme desert environments. Our findings present the first example of carotenoid metabolic engineering in a red eukaryotic microalga and open the possibility for use of <em>C. merolae</em> 10D for simultaneous production of phycocyanin and ketocarotenoid pigments.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"17 ","pages":"Article e00226"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Engineered ketocarotenoid biosynthesis in the polyextremophilic red microalga Cyanidioschyzon merolae 10D\",\"authors\":\"Mark Seger , Fakhriyya Mammadova , Melany Villegas-Valencia , Bárbara Bastos de Freitas , Clarissa Chang , Iona Isachsen , Haley Hemstreet , Fatimah Abualsaud , Malia Boring , Peter J. Lammers , Kyle J. Lauersen\",\"doi\":\"10.1016/j.mec.2023.e00226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The polyextremophilic Cyanidiophyceae are eukaryotic red microalgae with promising biotechnological properties arising from their low pH and elevated temperature requirements which can minimize culture contamination at scale. <em>Cyanidioschyzon merolae</em> 10D is a cell wall deficient species with a fully sequenced genome that is amenable to nuclear transgene integration by targeted homologous recombination. <em>C. merolae</em> maintains a minimal carotenoid profile and here, we sought to determine its capacity for ketocarotenoid accumulation mediated by heterologous expression of a green algal β-carotene ketolase (BKT) and hydroxylase (CHYB). To achieve this, a synthetic transgene expression cassette system was built to integrate and express <em>Chlamydomonas reinhardtii</em> (Cr) sourced enzymes by fusing native <em>C. merolae</em> transcription, translation and chloroplast targeting signals to codon-optimized coding sequences. Chloramphenicol resistance was used to select for the integration of synthetic linear DNAs into a neutral site within the host genome. <em>Cr</em>BKT expression caused accumulation of canthaxanthin and adonirubin as major carotenoids while co-expression of <em>Cr</em>BKT with <em>Cr</em>CHYB generated astaxanthin as the major carotenoid in <em>C. merolae</em>. Unlike green algae and plants, ketocarotenoid accumulation in <em>C. merolae</em> did not reduce total carotenoid contents, but chlorophyll <em>a</em> reduction was observed. Light intensity affected global ratios of all pigments but not individual pigment compositions and phycocyanin contents were not markedly different between parental strain and transformants. Continuous illumination was found to encourage biomass accumulation and all strains could be cultivated in simulated summer conditions from two different extreme desert environments. Our findings present the first example of carotenoid metabolic engineering in a red eukaryotic microalga and open the possibility for use of <em>C. merolae</em> 10D for simultaneous production of phycocyanin and ketocarotenoid pigments.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":\"17 \",\"pages\":\"Article e00226\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030123000093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030123000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Engineered ketocarotenoid biosynthesis in the polyextremophilic red microalga Cyanidioschyzon merolae 10D
The polyextremophilic Cyanidiophyceae are eukaryotic red microalgae with promising biotechnological properties arising from their low pH and elevated temperature requirements which can minimize culture contamination at scale. Cyanidioschyzon merolae 10D is a cell wall deficient species with a fully sequenced genome that is amenable to nuclear transgene integration by targeted homologous recombination. C. merolae maintains a minimal carotenoid profile and here, we sought to determine its capacity for ketocarotenoid accumulation mediated by heterologous expression of a green algal β-carotene ketolase (BKT) and hydroxylase (CHYB). To achieve this, a synthetic transgene expression cassette system was built to integrate and express Chlamydomonas reinhardtii (Cr) sourced enzymes by fusing native C. merolae transcription, translation and chloroplast targeting signals to codon-optimized coding sequences. Chloramphenicol resistance was used to select for the integration of synthetic linear DNAs into a neutral site within the host genome. CrBKT expression caused accumulation of canthaxanthin and adonirubin as major carotenoids while co-expression of CrBKT with CrCHYB generated astaxanthin as the major carotenoid in C. merolae. Unlike green algae and plants, ketocarotenoid accumulation in C. merolae did not reduce total carotenoid contents, but chlorophyll a reduction was observed. Light intensity affected global ratios of all pigments but not individual pigment compositions and phycocyanin contents were not markedly different between parental strain and transformants. Continuous illumination was found to encourage biomass accumulation and all strains could be cultivated in simulated summer conditions from two different extreme desert environments. Our findings present the first example of carotenoid metabolic engineering in a red eukaryotic microalga and open the possibility for use of C. merolae 10D for simultaneous production of phycocyanin and ketocarotenoid pigments.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.