Wenfeng Zhao , Hu Li , Heng Zhang , Song Yang , Anders Riisager
{"title":"氨硼烷实现的氢转移过程:对催化策略和机制的见解","authors":"Wenfeng Zhao , Hu Li , Heng Zhang , Song Yang , Anders Riisager","doi":"10.1016/j.gee.2022.03.011","DOIUrl":null,"url":null,"abstract":"<div><p>Transfer hydrogenation (TH) with <em>in situ</em> generated hydrogen donor is of great importance in reduction reactions, and an alternative strategy to traditional hydrogenation processes involving pressurized molecular hydrogen. Ammonia borane (NH<sub>3</sub>BH<sub>3</sub>, AB) is a promising material of hydrogen storage, and it has attracted much attention in reductive organic transformations owing to its high activity, good atom economy, non-toxicity, sustainability, and ease of transport and storage. This review focuses on summarizing the recent progress of AB-mediated TH reactions of diverse substrates including nitro compounds, nitriles, imines, alkenes, alkynes, carbonyl compounds (ketones and aldehydes), carbon dioxide, and <em>N</em>- and <em>O</em>-heterocycles. Syntheses protocols (metal-containing and metal-free), the effect of reaction parameters, product distribution, and variation of reactivity are surveyed, and the mechanism of each reaction involving the action mode of AB as well as structure<em>-</em>activity relationships is discussed in detail. Finally, perspectives are presented to highlight the challenges and opportunities for AB-enabled TH reactions of unsaturated compounds.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 4","pages":"Pages 948-971"},"PeriodicalIF":10.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ammonia borane-enabled hydrogen transfer processes: Insights into catalytic strategies and mechanisms\",\"authors\":\"Wenfeng Zhao , Hu Li , Heng Zhang , Song Yang , Anders Riisager\",\"doi\":\"10.1016/j.gee.2022.03.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transfer hydrogenation (TH) with <em>in situ</em> generated hydrogen donor is of great importance in reduction reactions, and an alternative strategy to traditional hydrogenation processes involving pressurized molecular hydrogen. Ammonia borane (NH<sub>3</sub>BH<sub>3</sub>, AB) is a promising material of hydrogen storage, and it has attracted much attention in reductive organic transformations owing to its high activity, good atom economy, non-toxicity, sustainability, and ease of transport and storage. This review focuses on summarizing the recent progress of AB-mediated TH reactions of diverse substrates including nitro compounds, nitriles, imines, alkenes, alkynes, carbonyl compounds (ketones and aldehydes), carbon dioxide, and <em>N</em>- and <em>O</em>-heterocycles. Syntheses protocols (metal-containing and metal-free), the effect of reaction parameters, product distribution, and variation of reactivity are surveyed, and the mechanism of each reaction involving the action mode of AB as well as structure<em>-</em>activity relationships is discussed in detail. Finally, perspectives are presented to highlight the challenges and opportunities for AB-enabled TH reactions of unsaturated compounds.</p></div>\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"8 4\",\"pages\":\"Pages 948-971\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468025722000620\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468025722000620","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ammonia borane-enabled hydrogen transfer processes: Insights into catalytic strategies and mechanisms
Transfer hydrogenation (TH) with in situ generated hydrogen donor is of great importance in reduction reactions, and an alternative strategy to traditional hydrogenation processes involving pressurized molecular hydrogen. Ammonia borane (NH3BH3, AB) is a promising material of hydrogen storage, and it has attracted much attention in reductive organic transformations owing to its high activity, good atom economy, non-toxicity, sustainability, and ease of transport and storage. This review focuses on summarizing the recent progress of AB-mediated TH reactions of diverse substrates including nitro compounds, nitriles, imines, alkenes, alkynes, carbonyl compounds (ketones and aldehydes), carbon dioxide, and N- and O-heterocycles. Syntheses protocols (metal-containing and metal-free), the effect of reaction parameters, product distribution, and variation of reactivity are surveyed, and the mechanism of each reaction involving the action mode of AB as well as structure-activity relationships is discussed in detail. Finally, perspectives are presented to highlight the challenges and opportunities for AB-enabled TH reactions of unsaturated compounds.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.