截断八面体LiMn2O4的构建用于从盐水中回收类电池电化学锂

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Green Energy & Environment Pub Date : 2023-08-01 DOI:10.1016/j.gee.2021.12.002
Guolang Zhou , Linlin Chen , Xiaowei Li , Guiling Luo , Zhendong Yu , Jingzhou Yin , Lei Fan , Yanhong Chao , Lei Jiang , Wenshuai Zhu
{"title":"截断八面体LiMn2O4的构建用于从盐水中回收类电池电化学锂","authors":"Guolang Zhou ,&nbsp;Linlin Chen ,&nbsp;Xiaowei Li ,&nbsp;Guiling Luo ,&nbsp;Zhendong Yu ,&nbsp;Jingzhou Yin ,&nbsp;Lei Fan ,&nbsp;Yanhong Chao ,&nbsp;Lei Jiang ,&nbsp;Wenshuai Zhu","doi":"10.1016/j.gee.2021.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn<sub>2</sub>O<sub>4</sub>-based electrochemical lithium recovery system is one of the strongest candidates for commercial application due to its high inserted capacity and low energy consumption. However, the surface orientation of LiMn<sub>2</sub>O<sub>4</sub> that facilitates Li diffusion happens to be prone to manganese dissolution making it a great challenge to obtain high lithium inserted capacity and long life simultaneously. Herein, we address this problem by designing a truncated octahedral LiMn<sub>2</sub>O<sub>4</sub> (Tr-oh LMO) in which the dominant (111) facets minimize Mn dissolution while a small portion of (100) facets facilitate the Li diffusion. Thus, this Tr-oh LMO-based electrochemical lithium recovery system shows excellent Li recovery performance with high inserted capacity (20.25 mg g<sup>−1</sup> per cycle) in simulated brine. In addition, the dissolution rate of manganese per 30 cycles is only 0.44% and the capacity maintained 85% of the initial after 30 cycles. These promising findings accelerate the practical application of LiMn<sub>2</sub>O<sub>4</sub> in electrochemical lithium recovery.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 4","pages":"Pages 1081-1090"},"PeriodicalIF":10.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine\",\"authors\":\"Guolang Zhou ,&nbsp;Linlin Chen ,&nbsp;Xiaowei Li ,&nbsp;Guiling Luo ,&nbsp;Zhendong Yu ,&nbsp;Jingzhou Yin ,&nbsp;Lei Fan ,&nbsp;Yanhong Chao ,&nbsp;Lei Jiang ,&nbsp;Wenshuai Zhu\",\"doi\":\"10.1016/j.gee.2021.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn<sub>2</sub>O<sub>4</sub>-based electrochemical lithium recovery system is one of the strongest candidates for commercial application due to its high inserted capacity and low energy consumption. However, the surface orientation of LiMn<sub>2</sub>O<sub>4</sub> that facilitates Li diffusion happens to be prone to manganese dissolution making it a great challenge to obtain high lithium inserted capacity and long life simultaneously. Herein, we address this problem by designing a truncated octahedral LiMn<sub>2</sub>O<sub>4</sub> (Tr-oh LMO) in which the dominant (111) facets minimize Mn dissolution while a small portion of (100) facets facilitate the Li diffusion. Thus, this Tr-oh LMO-based electrochemical lithium recovery system shows excellent Li recovery performance with high inserted capacity (20.25 mg g<sup>−1</sup> per cycle) in simulated brine. In addition, the dissolution rate of manganese per 30 cycles is only 0.44% and the capacity maintained 85% of the initial after 30 cycles. These promising findings accelerate the practical application of LiMn<sub>2</sub>O<sub>4</sub> in electrochemical lithium recovery.</p></div>\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"8 4\",\"pages\":\"Pages 1081-1090\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468025721002053\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468025721002053","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 14

摘要

由于全球对锂产品需求的爆炸性增长,从盐湖或海水中提取锂引起了全世界的关注。基于LiMn2O4的电化学锂回收系统由于其高插入容量和低能耗而成为商业应用的最有力的候选者之一。然而,促进Li扩散的LiMn2O4的表面取向恰好易于锰溶解,这使得同时获得高锂插入容量和长寿命成为一个巨大的挑战。在此,我们通过设计截头八面体LiMn2O4(Tr-oh-LMO)来解决这个问题,其中主要的(111)晶面最小化Mn的溶解,而(100)晶面的一小部分促进Li的扩散。因此,这种基于Tr-oh-LMO的电化学锂回收系统在模拟盐水中表现出优异的锂回收性能,具有高插入容量(每次循环20.25 mg g−1)。此外,锰每30次循环的溶解率仅为0.44%,并且在30次循环后容量保持初始容量的85%。这些有希望的发现加速了LiMn2O4在电化学锂回收中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine

The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn2O4-based electrochemical lithium recovery system is one of the strongest candidates for commercial application due to its high inserted capacity and low energy consumption. However, the surface orientation of LiMn2O4 that facilitates Li diffusion happens to be prone to manganese dissolution making it a great challenge to obtain high lithium inserted capacity and long life simultaneously. Herein, we address this problem by designing a truncated octahedral LiMn2O4 (Tr-oh LMO) in which the dominant (111) facets minimize Mn dissolution while a small portion of (100) facets facilitate the Li diffusion. Thus, this Tr-oh LMO-based electrochemical lithium recovery system shows excellent Li recovery performance with high inserted capacity (20.25 mg g−1 per cycle) in simulated brine. In addition, the dissolution rate of manganese per 30 cycles is only 0.44% and the capacity maintained 85% of the initial after 30 cycles. These promising findings accelerate the practical application of LiMn2O4 in electrochemical lithium recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
期刊最新文献
Construction of two-dimensional heterojunctions based on metal-free semiconductor materials and Covalent Organic Frameworks for exceptional solar energy catalysis Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis Research on the application of defect engineering in the field of environmental catalysis Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1