Jingyi Wang , Jiajia Huang , Siyu Zhao , Ivan P. Parkin , Zhihong Tian , Feili Lai , Tianxi Liu , Guanjie He
{"title":"普鲁士蓝类似物衍生的Mo/Fe双金属焦磷酸盐用于快速电催化析氧","authors":"Jingyi Wang , Jiajia Huang , Siyu Zhao , Ivan P. Parkin , Zhihong Tian , Feili Lai , Tianxi Liu , Guanjie He","doi":"10.1016/j.gee.2022.02.014","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production. Herein, a simple and practical method was applied to fabricate (Mo, Fe)P<sub>2</sub>O<sub>7</sub>@NF electrocatalyst by directly growing Mo/Fe bimetallic pyrophosphate derived from Prussian blue analogues on three-dimensional porous current collector. In alkaline media, the developed material possesses good hydrophilic features and exhibits best-in-class oxygen evolution reaction (OER) performances. Surprisingly, the (Mo, Fe)P<sub>2</sub>O<sub>7</sub>@NF only requires overpotentials of 250 and 290 mV to deliver 100 and 600 mA cm<sup>−2</sup> in 1 mol L<sup>−1</sup> KOH, respectively. Furthermore, the (Mo, Fe)P<sub>2</sub>O<sub>7</sub>@NF shows outstanding performances in alkaline salty water and 1 mol L<sup>−1</sup> high purity KOH. A worthwhile pathway is provided to combine bimetallic pyrophosphate with commercial Ni foam to form robust electrocatalysts for stable electrocatalytic OER, which has a positive impact on both hydrogen energy application and environmental restoration.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 5","pages":"Pages 1450-1458"},"PeriodicalIF":10.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mo/Fe bimetallic pyrophosphates derived from Prussian blue analogues for rapid electrocatalytic oxygen evolution\",\"authors\":\"Jingyi Wang , Jiajia Huang , Siyu Zhao , Ivan P. Parkin , Zhihong Tian , Feili Lai , Tianxi Liu , Guanjie He\",\"doi\":\"10.1016/j.gee.2022.02.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production. Herein, a simple and practical method was applied to fabricate (Mo, Fe)P<sub>2</sub>O<sub>7</sub>@NF electrocatalyst by directly growing Mo/Fe bimetallic pyrophosphate derived from Prussian blue analogues on three-dimensional porous current collector. In alkaline media, the developed material possesses good hydrophilic features and exhibits best-in-class oxygen evolution reaction (OER) performances. Surprisingly, the (Mo, Fe)P<sub>2</sub>O<sub>7</sub>@NF only requires overpotentials of 250 and 290 mV to deliver 100 and 600 mA cm<sup>−2</sup> in 1 mol L<sup>−1</sup> KOH, respectively. Furthermore, the (Mo, Fe)P<sub>2</sub>O<sub>7</sub>@NF shows outstanding performances in alkaline salty water and 1 mol L<sup>−1</sup> high purity KOH. A worthwhile pathway is provided to combine bimetallic pyrophosphate with commercial Ni foam to form robust electrocatalysts for stable electrocatalytic OER, which has a positive impact on both hydrogen energy application and environmental restoration.</p></div>\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"8 5\",\"pages\":\"Pages 1450-1458\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468025722000413\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468025722000413","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
摘要
高效稳定的析氧电催化剂对于水分解和制氢的工业应用是必不可少的。本文采用一种简单实用的方法制备了(Mo,Fe)P2O7@NF在三维多孔集流体上直接生长由普鲁士蓝类似物衍生的Mo/Fe双金属焦磷酸盐的电催化剂。在碱性介质中,所开发的材料具有良好的亲水性,并表现出同类最佳的析氧反应(OER)性能。令人惊讶的是,(Mo,Fe)P2O7@NF仅需要250和290 mV的过电位才能分别在1 mol L−1 KOH中提供100和600 mA cm−2。此外,(Mo,Fe)P2O7@NF在碱性盐水和1 mol L−1高纯度KOH中显示出优异的性能。提供了一种有价值的途径,将双金属焦磷酸盐与商业镍泡沫结合,形成稳定的电催化OER的强大电催化剂,这对氢能应用和环境恢复都有积极影响。
Mo/Fe bimetallic pyrophosphates derived from Prussian blue analogues for rapid electrocatalytic oxygen evolution
Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production. Herein, a simple and practical method was applied to fabricate (Mo, Fe)P2O7@NF electrocatalyst by directly growing Mo/Fe bimetallic pyrophosphate derived from Prussian blue analogues on three-dimensional porous current collector. In alkaline media, the developed material possesses good hydrophilic features and exhibits best-in-class oxygen evolution reaction (OER) performances. Surprisingly, the (Mo, Fe)P2O7@NF only requires overpotentials of 250 and 290 mV to deliver 100 and 600 mA cm−2 in 1 mol L−1 KOH, respectively. Furthermore, the (Mo, Fe)P2O7@NF shows outstanding performances in alkaline salty water and 1 mol L−1 high purity KOH. A worthwhile pathway is provided to combine bimetallic pyrophosphate with commercial Ni foam to form robust electrocatalysts for stable electrocatalytic OER, which has a positive impact on both hydrogen energy application and environmental restoration.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.