坦帕湾沿岸海洋模型(TBCOM)现播/预报系统

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Deep-sea Research Part Ii-topical Studies in Oceanography Pub Date : 2023-10-01 DOI:10.1016/j.dsr2.2023.105322
Jing Chen, Robert H. Weisberg, Yonggang Liu, Lianyuan Zheng, Jason Law, Sherryl Gilbert, Steven A. Murawski
{"title":"坦帕湾沿岸海洋模型(TBCOM)现播/预报系统","authors":"Jing Chen,&nbsp;Robert H. Weisberg,&nbsp;Yonggang Liu,&nbsp;Lianyuan Zheng,&nbsp;Jason Law,&nbsp;Sherryl Gilbert,&nbsp;Steven A. Murawski","doi":"10.1016/j.dsr2.2023.105322","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>As a partially mixed estuary, Tampa Bay is influenced both by its connections to the adjacent </span>Gulf of Mexico<span> (GOM) and what occurs locally within the estuary. To assist in addressing the many scientific questions arising from various environmental factors, a very high resolution Tampa Bay Coastal Ocean Model (TBCOM) is modified to downscale from the deep GOM, across the continental shelf and into Tampa Bay to provide daily, automated nowcasts and forecasts. Veracity tests are provided for sea levels and currents forced by tides, synoptic weather variations and for extreme events. The model is also demonstrated to reproduce the net </span></span>estuarine circulation through comparisons between in situ observations and model simulations. With demonstrated accuracy, TBCOM forecast sea levels are provided online as a reference for navigation support and for extreme events such as hurricane storm surge. Model simulations, even with a perfect model, are subject to errors by the forcing functions. For Tampa Bay, the NOAA NAM winds used to force the model are found to underestimate the actual winds, suggesting that additional wind observations for assimilation into operational </span>weather forecast<span> models may offer further improvements. This finding highlights the need for further coordination between coastal ocean observing systems and the ocean and atmosphere modeling communities. With coastal ocean and estuary material properties determined largely by the circulation, most ecological applications require accurate and timely circulation information, which the TBCOM Nowcast/Forecast System for Tampa Bay endeavors to provide.</span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105322"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Tampa Bay coastal ocean model (TBCOM) nowcast/forecast system\",\"authors\":\"Jing Chen,&nbsp;Robert H. Weisberg,&nbsp;Yonggang Liu,&nbsp;Lianyuan Zheng,&nbsp;Jason Law,&nbsp;Sherryl Gilbert,&nbsp;Steven A. Murawski\",\"doi\":\"10.1016/j.dsr2.2023.105322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>As a partially mixed estuary, Tampa Bay is influenced both by its connections to the adjacent </span>Gulf of Mexico<span> (GOM) and what occurs locally within the estuary. To assist in addressing the many scientific questions arising from various environmental factors, a very high resolution Tampa Bay Coastal Ocean Model (TBCOM) is modified to downscale from the deep GOM, across the continental shelf and into Tampa Bay to provide daily, automated nowcasts and forecasts. Veracity tests are provided for sea levels and currents forced by tides, synoptic weather variations and for extreme events. The model is also demonstrated to reproduce the net </span></span>estuarine circulation through comparisons between in situ observations and model simulations. With demonstrated accuracy, TBCOM forecast sea levels are provided online as a reference for navigation support and for extreme events such as hurricane storm surge. Model simulations, even with a perfect model, are subject to errors by the forcing functions. For Tampa Bay, the NOAA NAM winds used to force the model are found to underestimate the actual winds, suggesting that additional wind observations for assimilation into operational </span>weather forecast<span> models may offer further improvements. This finding highlights the need for further coordination between coastal ocean observing systems and the ocean and atmosphere modeling communities. With coastal ocean and estuary material properties determined largely by the circulation, most ecological applications require accurate and timely circulation information, which the TBCOM Nowcast/Forecast System for Tampa Bay endeavors to provide.</span></p></div>\",\"PeriodicalId\":11120,\"journal\":{\"name\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"volume\":\"211 \",\"pages\":\"Article 105322\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967064523000723\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000723","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 3

摘要

作为一个部分混合的河口,坦帕湾受到其与邻近墨西哥湾(GOM)的连接以及河口内局部情况的影响。为了帮助解决由各种环境因素引起的许多科学问题,对一个非常高分辨率的坦帕湾沿海海洋模型(TBCOM)进行了修改,使其从GOM深处缩小,穿过大陆架,进入坦帕湾,以提供每日自动的现时预报和预测。针对潮汐、天气变化和极端事件造成的海平面和洋流,提供了准确度测试。通过现场观测和模型模拟的比较,该模型也被证明可以重现河口净环流。TBCOM的海平面预报已被证明是准确的,可在线提供,作为导航支持和飓风风暴潮等极端事件的参考。模型模拟,即使有一个完美的模型,也会受到强迫函数的误差。对于坦帕湾,美国国家海洋和大气管理局用于强制该模型的NAM风被发现低估了实际风,这表明用于同化到操作天气预报模型中的额外风观测可能会提供进一步的改进。这一发现强调了沿海海洋观测系统与海洋和大气建模社区之间进一步协调的必要性。由于沿海海洋和河口的物质特性主要由环流决定,大多数生态应用都需要准确及时的环流信息,而坦帕湾的TBCOM Nowcast/预报系统正致力于提供这些信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Tampa Bay coastal ocean model (TBCOM) nowcast/forecast system

As a partially mixed estuary, Tampa Bay is influenced both by its connections to the adjacent Gulf of Mexico (GOM) and what occurs locally within the estuary. To assist in addressing the many scientific questions arising from various environmental factors, a very high resolution Tampa Bay Coastal Ocean Model (TBCOM) is modified to downscale from the deep GOM, across the continental shelf and into Tampa Bay to provide daily, automated nowcasts and forecasts. Veracity tests are provided for sea levels and currents forced by tides, synoptic weather variations and for extreme events. The model is also demonstrated to reproduce the net estuarine circulation through comparisons between in situ observations and model simulations. With demonstrated accuracy, TBCOM forecast sea levels are provided online as a reference for navigation support and for extreme events such as hurricane storm surge. Model simulations, even with a perfect model, are subject to errors by the forcing functions. For Tampa Bay, the NOAA NAM winds used to force the model are found to underestimate the actual winds, suggesting that additional wind observations for assimilation into operational weather forecast models may offer further improvements. This finding highlights the need for further coordination between coastal ocean observing systems and the ocean and atmosphere modeling communities. With coastal ocean and estuary material properties determined largely by the circulation, most ecological applications require accurate and timely circulation information, which the TBCOM Nowcast/Forecast System for Tampa Bay endeavors to provide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
16.70%
发文量
115
审稿时长
3 months
期刊介绍: Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.
期刊最新文献
Unveiling marine heatwave dynamics in the Persian /Arabian Gulf and the Gulf of Oman: A spatio-temporal analysis and future projections Ecophenotypic variation in a cosmopolitan reef-building coral suggests reduced deep-sea reef growth under ocean change Siliceous microfossil assemblages in the southern Emperor Seamount Chain sediments and their biogeographical and paleoceanographical implications The first Mud Dragons (Kinorhyncha) from the Emperor Seamount Chain (Northwestern Pacific) with notes on their biogeography and distribution patterns in the Pacific Deep-Sea Latitudinal variation in zooplankton over the Emperor Seamounts (34°–44° N, 170°–171° E) during the summer of 2019
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1