Shun Mao , Ruoying He , John Bane , Glen Gawarkiewicz , Robert E. Todd
{"title":"墨西哥湾流变异性的数据同化建模研究","authors":"Shun Mao , Ruoying He , John Bane , Glen Gawarkiewicz , Robert E. Todd","doi":"10.1016/j.dsr2.2023.105319","DOIUrl":null,"url":null,"abstract":"<div><p>An advanced data-assimilative ocean circulation model is used to investigate Gulf Stream<span><span><span><span> (GS) variability during 2017–2018. The modeling system applies a strong-constraint, 4D variational data assimilation<span> algorithm. It assimilates satellite-based sea surface height and </span></span>sea surface temperature measurements and in situ temperature and </span>salinity profiles. Model skill assessment metrics along with comparisons of GS position and GS's three-dimensional mean kinetic energy with historical observations are applied to validate the data-assimilative model. The resulting time- and space-continuous ocean state estimates are used to diagnose eddy kinetic energy conversion and cross-stream eddy heat and salt fluxes over the two-year study period. The processes leading to kinetic energy conversion are primarily due to GS meanders. Significant inverse energy cascading (EKE→MKE and EKE→EPE) can occur during GS-eddy interactions, particularly during onshore intrusions or offshore meanderings of the GS. Throughout the two-year study period, the cross-stream eddy heat and salt fluxes off Cape Hatteras were predominantly positive (onshore). Both GS offshore meandering (occurring 44% of the time and associated with shelf/slope water export) and GS intrusion (occurring 56% of the time) contribute to onshore heat and salt transport. Improved understanding of these processes and dynamics requires strong integration of an advanced observational infrastructure that combines </span>remote sensing; fixed, mobile, and shore-based observing components; and high-resolution data assimilative models.</span></p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"211 ","pages":"Article 105319"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A data-assimilative modeling investigation of Gulf Stream variability\",\"authors\":\"Shun Mao , Ruoying He , John Bane , Glen Gawarkiewicz , Robert E. Todd\",\"doi\":\"10.1016/j.dsr2.2023.105319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An advanced data-assimilative ocean circulation model is used to investigate Gulf Stream<span><span><span><span> (GS) variability during 2017–2018. The modeling system applies a strong-constraint, 4D variational data assimilation<span> algorithm. It assimilates satellite-based sea surface height and </span></span>sea surface temperature measurements and in situ temperature and </span>salinity profiles. Model skill assessment metrics along with comparisons of GS position and GS's three-dimensional mean kinetic energy with historical observations are applied to validate the data-assimilative model. The resulting time- and space-continuous ocean state estimates are used to diagnose eddy kinetic energy conversion and cross-stream eddy heat and salt fluxes over the two-year study period. The processes leading to kinetic energy conversion are primarily due to GS meanders. Significant inverse energy cascading (EKE→MKE and EKE→EPE) can occur during GS-eddy interactions, particularly during onshore intrusions or offshore meanderings of the GS. Throughout the two-year study period, the cross-stream eddy heat and salt fluxes off Cape Hatteras were predominantly positive (onshore). Both GS offshore meandering (occurring 44% of the time and associated with shelf/slope water export) and GS intrusion (occurring 56% of the time) contribute to onshore heat and salt transport. Improved understanding of these processes and dynamics requires strong integration of an advanced observational infrastructure that combines </span>remote sensing; fixed, mobile, and shore-based observing components; and high-resolution data assimilative models.</span></p></div>\",\"PeriodicalId\":11120,\"journal\":{\"name\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"volume\":\"211 \",\"pages\":\"Article 105319\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967064523000693\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064523000693","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
A data-assimilative modeling investigation of Gulf Stream variability
An advanced data-assimilative ocean circulation model is used to investigate Gulf Stream (GS) variability during 2017–2018. The modeling system applies a strong-constraint, 4D variational data assimilation algorithm. It assimilates satellite-based sea surface height and sea surface temperature measurements and in situ temperature and salinity profiles. Model skill assessment metrics along with comparisons of GS position and GS's three-dimensional mean kinetic energy with historical observations are applied to validate the data-assimilative model. The resulting time- and space-continuous ocean state estimates are used to diagnose eddy kinetic energy conversion and cross-stream eddy heat and salt fluxes over the two-year study period. The processes leading to kinetic energy conversion are primarily due to GS meanders. Significant inverse energy cascading (EKE→MKE and EKE→EPE) can occur during GS-eddy interactions, particularly during onshore intrusions or offshore meanderings of the GS. Throughout the two-year study period, the cross-stream eddy heat and salt fluxes off Cape Hatteras were predominantly positive (onshore). Both GS offshore meandering (occurring 44% of the time and associated with shelf/slope water export) and GS intrusion (occurring 56% of the time) contribute to onshore heat and salt transport. Improved understanding of these processes and dynamics requires strong integration of an advanced observational infrastructure that combines remote sensing; fixed, mobile, and shore-based observing components; and high-resolution data assimilative models.
期刊介绍:
Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.