包含主动学习的单变量时间序列中的异常检测

Rik van Leeuwen , Ger Koole
{"title":"包含主动学习的单变量时间序列中的异常检测","authors":"Rik van Leeuwen ,&nbsp;Ger Koole","doi":"10.1016/j.jcmds.2022.100072","DOIUrl":null,"url":null,"abstract":"<div><p>In this research. we study anomaly detection in univariate time series and optimize according to a business objective using a novel active learning approach. The motivation is to detect anomalies while monitoring systems within an IT infrastructure, known as intrusion detection, specifically for hotel organizations. The proposed detector is based on moving averages in combination with a prediction interval, where parameters are optimized via an active learning component. By using prediction intervals, the results are easily interpretable for domain experts due to the white-box nature of the detector. Annotations originating from domain experts serve as input to acquire oracle parameters, which are obtained via Bayesian optimization using Gaussian process. The detector is tested on the Numenta Anomaly Benchmark (NAB) and is compared to commonly used black-box models.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"6 ","pages":"Article 100072"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anomaly detection in univariate time series incorporating active learning\",\"authors\":\"Rik van Leeuwen ,&nbsp;Ger Koole\",\"doi\":\"10.1016/j.jcmds.2022.100072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research. we study anomaly detection in univariate time series and optimize according to a business objective using a novel active learning approach. The motivation is to detect anomalies while monitoring systems within an IT infrastructure, known as intrusion detection, specifically for hotel organizations. The proposed detector is based on moving averages in combination with a prediction interval, where parameters are optimized via an active learning component. By using prediction intervals, the results are easily interpretable for domain experts due to the white-box nature of the detector. Annotations originating from domain experts serve as input to acquire oracle parameters, which are obtained via Bayesian optimization using Gaussian process. The detector is tested on the Numenta Anomaly Benchmark (NAB) and is compared to commonly used black-box models.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"6 \",\"pages\":\"Article 100072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中。我们研究了单变量时间序列中的异常检测,并使用一种新的主动学习方法根据业务目标进行优化。其动机是在监控IT基础设施内的系统时检测异常,即入侵检测,专门针对酒店组织。所提出的检测器基于移动平均值和预测区间,其中参数通过主动学习组件进行优化。通过使用预测区间,由于检测器的白盒性质,领域专家可以很容易地解释结果。源自领域专家的注释作为获取oracle参数的输入,这些参数是使用高斯过程通过贝叶斯优化获得的。该探测器在Numenta异常基准(NAB)上进行了测试,并与常用的黑盒模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly detection in univariate time series incorporating active learning

In this research. we study anomaly detection in univariate time series and optimize according to a business objective using a novel active learning approach. The motivation is to detect anomalies while monitoring systems within an IT infrastructure, known as intrusion detection, specifically for hotel organizations. The proposed detector is based on moving averages in combination with a prediction interval, where parameters are optimized via an active learning component. By using prediction intervals, the results are easily interpretable for domain experts due to the white-box nature of the detector. Annotations originating from domain experts serve as input to acquire oracle parameters, which are obtained via Bayesian optimization using Gaussian process. The detector is tested on the Numenta Anomaly Benchmark (NAB) and is compared to commonly used black-box models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1