“机器学习”算法在多发性硬化症中应用的系统评价

IF 2.9 4区 医学 Q2 CLINICAL NEUROLOGY Neurologia Pub Date : 2023-10-01 DOI:10.1016/j.nrl.2020.10.017
M. Vázquez-Marrufo , E. Sarrias-Arrabal , M. García-Torres , R. Martín-Clemente , G. Izquierdo
{"title":"“机器学习”算法在多发性硬化症中应用的系统评价","authors":"M. Vázquez-Marrufo ,&nbsp;E. Sarrias-Arrabal ,&nbsp;M. García-Torres ,&nbsp;R. Martín-Clemente ,&nbsp;G. Izquierdo","doi":"10.1016/j.nrl.2020.10.017","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>The applications of artificial intelligence, and in particular automatic learning or “machine learning” (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years.</p></div><div><h3>Objective</h3><p>We present a systematic review of the application of ML algorithms in MS.</p></div><div><h3>Materials and methods</h3><p>We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords “machine learning” and “multiple sclerosis.” We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected.</p></div><div><h3>Conclusions</h3><p>After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.</p></div>","PeriodicalId":19300,"journal":{"name":"Neurologia","volume":"38 8","pages":"Pages 577-590"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nrl.2020.10.017","citationCount":"2","resultStr":"{\"title\":\"Revisión sistemática de la aplicación de algoritmos de «machine learning» en la esclerosis múltiple\",\"authors\":\"M. Vázquez-Marrufo ,&nbsp;E. Sarrias-Arrabal ,&nbsp;M. García-Torres ,&nbsp;R. Martín-Clemente ,&nbsp;G. Izquierdo\",\"doi\":\"10.1016/j.nrl.2020.10.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>The applications of artificial intelligence, and in particular automatic learning or “machine learning” (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years.</p></div><div><h3>Objective</h3><p>We present a systematic review of the application of ML algorithms in MS.</p></div><div><h3>Materials and methods</h3><p>We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords “machine learning” and “multiple sclerosis.” We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected.</p></div><div><h3>Conclusions</h3><p>After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.</p></div>\",\"PeriodicalId\":19300,\"journal\":{\"name\":\"Neurologia\",\"volume\":\"38 8\",\"pages\":\"Pages 577-590\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nrl.2020.10.017\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S021348532030431X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurologia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S021348532030431X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 2

摘要

引言人工智能的应用,特别是自动学习或“机器学习”(ML),在许多科学、技术和临床学科中既是一个挑战,也是一个巨大的机遇。在多发性硬化症(MS)研究中的具体应用也不例外,近年来成为人们越来越感兴趣的领域。目的我们对ML算法在MS中的应用进行了系统综述。材料和方法我们使用PubMed搜索引擎来识别包括关键词“机器学习”和“多发性硬化症”在内的研究,以及主要是技术性的,不专门适用于MS的研究。最终选择包括76篇文章,38篇被拒绝。结论经过回顾,我们确定了ML在MS中的4个主要应用:1)MS亚型的分类;2) 将MS患者与健康对照组和患有其他疾病的个体区分开来;3) 预测治疗干预的进展和反应;以及4)其他应用。迄今为止发现的结果表明,ML算法可以在临床环境和MS研究中为卫生专业人员提供强大的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisión sistemática de la aplicación de algoritmos de «machine learning» en la esclerosis múltiple

Introduction

The applications of artificial intelligence, and in particular automatic learning or “machine learning” (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years.

Objective

We present a systematic review of the application of ML algorithms in MS.

Materials and methods

We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords “machine learning” and “multiple sclerosis.” We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected.

Conclusions

After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurologia
Neurologia 医学-临床神经学
CiteScore
5.90
自引率
2.60%
发文量
135
审稿时长
48 days
期刊介绍: Neurología es la revista oficial de la Sociedad Española de Neurología y publica, desde 1986 contribuciones científicas en el campo de la neurología clínica y experimental. Los contenidos de Neurología abarcan desde la neuroepidemiología, la clínica neurológica, la gestión y asistencia neurológica y la terapéutica, a la investigación básica en neurociencias aplicada a la neurología. Las áreas temáticas de la revistas incluyen la neurologia infantil, la neuropsicología, la neurorehabilitación y la neurogeriatría. Los artículos publicados en Neurología siguen un proceso de revisión por doble ciego a fin de que los trabajos sean seleccionados atendiendo a su calidad, originalidad e interés y así estén sometidos a un proceso de mejora. El formato de artículos incluye Editoriales, Originales, Revisiones y Cartas al Editor, Neurología es el vehículo de información científica de reconocida calidad en profesionales interesados en la neurología que utilizan el español, como demuestra su inclusión en los más prestigiosos y selectivos índices bibliográficos del mundo.
期刊最新文献
Evaluation of the burden of migraine on the partner's lifestyle. Incidence of Bell's palsy after coronavirus disease (COVID-19) vaccination: a systematic review and meta-analysis. Síndrome de trombosis con trombocitopenia asociado a vacunas de adenovirus frente a la COVID-19: Epidemiología y presentación clínica de la serie española Validación de Neuromyotype: un teclado inteligente para la evaluación de pacientes con atrofia muscular espinal 5q Test cognitivos breves como herramienta de decisión en Atención Primaria. Estudio poblacional y de validación
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1