关于医疗人工智能相关数据的收集、存储、注释和管理的专家建议

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Intelligent medicine Pub Date : 2023-05-01 DOI:10.1016/j.imed.2021.11.002
Yahan Yang , Ruiyang Li , Yifan Xiang , Duoru Lin , Anqi Yan , Wenben Chen , Zhongwen Li , Weiyi Lai , Xiaohang Wu , Cheng Wan , Wei Bai , Xiucheng Huang , Qiang Li , Wenrui Deng , Xiyang Liu , Yucong Lin , Pisong Yan , Haotian Lin , Chinese Association of Artificial Intelligence, Medical Artificial Intelligence Branch of Guangdong Medical Association
{"title":"关于医疗人工智能相关数据的收集、存储、注释和管理的专家建议","authors":"Yahan Yang ,&nbsp;Ruiyang Li ,&nbsp;Yifan Xiang ,&nbsp;Duoru Lin ,&nbsp;Anqi Yan ,&nbsp;Wenben Chen ,&nbsp;Zhongwen Li ,&nbsp;Weiyi Lai ,&nbsp;Xiaohang Wu ,&nbsp;Cheng Wan ,&nbsp;Wei Bai ,&nbsp;Xiucheng Huang ,&nbsp;Qiang Li ,&nbsp;Wenrui Deng ,&nbsp;Xiyang Liu ,&nbsp;Yucong Lin ,&nbsp;Pisong Yan ,&nbsp;Haotian Lin ,&nbsp;Chinese Association of Artificial Intelligence, Medical Artificial Intelligence Branch of Guangdong Medical Association","doi":"10.1016/j.imed.2021.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Medical artificial intelligence (AI) and big data technology have rapidly advanced in recent years, and they are now routinely used for image-based diagnosis. China has a massive amount of medical data. However, a uniform criteria for medical data quality have yet to be established. Therefore, this review aimed to develop a standardized and detailed set of quality criteria for medical data collection, storage, annotation, and management related to medical AI. This would greatly improve the process of medical data resource sharing and the use of AI in clinical medicine.</p></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"3 2","pages":"Pages 144-149"},"PeriodicalIF":4.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Expert recommendation on collection, storage, annotation, and management of data related to medical artificial intelligence\",\"authors\":\"Yahan Yang ,&nbsp;Ruiyang Li ,&nbsp;Yifan Xiang ,&nbsp;Duoru Lin ,&nbsp;Anqi Yan ,&nbsp;Wenben Chen ,&nbsp;Zhongwen Li ,&nbsp;Weiyi Lai ,&nbsp;Xiaohang Wu ,&nbsp;Cheng Wan ,&nbsp;Wei Bai ,&nbsp;Xiucheng Huang ,&nbsp;Qiang Li ,&nbsp;Wenrui Deng ,&nbsp;Xiyang Liu ,&nbsp;Yucong Lin ,&nbsp;Pisong Yan ,&nbsp;Haotian Lin ,&nbsp;Chinese Association of Artificial Intelligence, Medical Artificial Intelligence Branch of Guangdong Medical Association\",\"doi\":\"10.1016/j.imed.2021.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Medical artificial intelligence (AI) and big data technology have rapidly advanced in recent years, and they are now routinely used for image-based diagnosis. China has a massive amount of medical data. However, a uniform criteria for medical data quality have yet to be established. Therefore, this review aimed to develop a standardized and detailed set of quality criteria for medical data collection, storage, annotation, and management related to medical AI. This would greatly improve the process of medical data resource sharing and the use of AI in clinical medicine.</p></div>\",\"PeriodicalId\":73400,\"journal\":{\"name\":\"Intelligent medicine\",\"volume\":\"3 2\",\"pages\":\"Pages 144-149\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667102621001200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102621001200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5

摘要

近年来,医学人工智能(AI)和大数据技术迅速发展,目前已被常规用于基于图像的诊断。中国有大量的医学数据。然而,尚未建立统一的医疗数据质量标准。因此,本综述旨在为医疗人工智能相关的医疗数据收集、存储、注释和管理制定一套标准化、详细的质量标准。这将极大地改善医疗数据资源共享过程和人工智能在临床医学中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expert recommendation on collection, storage, annotation, and management of data related to medical artificial intelligence

Medical artificial intelligence (AI) and big data technology have rapidly advanced in recent years, and they are now routinely used for image-based diagnosis. China has a massive amount of medical data. However, a uniform criteria for medical data quality have yet to be established. Therefore, this review aimed to develop a standardized and detailed set of quality criteria for medical data collection, storage, annotation, and management related to medical AI. This would greatly improve the process of medical data resource sharing and the use of AI in clinical medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
期刊最新文献
Impact of data balancing a multiclass dataset before the creation of association rules to study bacterial vaginosis Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review Improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging Increasing the accuracy and reproducibility of positron emission tomography radiomics for predicting pelvic lymph node metastasis in patients with cervical cancer using 3D local binary pattern-based texture features A clinical decision support system using rough set theory and machine learning for disease prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1