具有零件性质求和的冲击捕获的间断Galerkin谱元方法

Fengrui Zhang, Yulia T. Peet
{"title":"具有零件性质求和的冲击捕获的间断Galerkin谱元方法","authors":"Fengrui Zhang,&nbsp;Yulia T. Peet","doi":"10.1016/j.jcpx.2023.100123","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a computational methodology developed for a high-order approximation of compressible fluid dynamics equations with discontinuities. The methodology is based on a discontinuous Galerkin spectral-element method (DGSEM) built upon a split discretization framework with summation-by-parts (SBP) property, which mimics the integration-by-parts operation in a discrete sense. To extend the split DGSEM framework to discontinuous cases, we implement a shock capturing method based on the entropy viscosity formulation. The developed high-order split-form DGSEM with shock-capturing methodology is subject to a series of evaluation on both one-dimensional and two-dimensional, continuous and discontinuous cases. Convergence of the method is demonstrated both for smooth and shocked cases that have analytical solutions. The 2D Riemann problem tests illustrate an accurate representation of all the relevant flow phenomena, such as shocks, contact discontinuities, and rarefaction waves. All test cases are able to run with a polynomial order of 7 or higher. The values of the tunable parameters related to the entropy viscosity are robust for both 1D and 2D test problems. We also show that higher-order approximations yield smaller errors than lower-order approximations, for the same number of total degrees of freedom.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"17 ","pages":"Article 100123"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin spectral element method for shock capturing with summation by parts properties\",\"authors\":\"Fengrui Zhang,&nbsp;Yulia T. Peet\",\"doi\":\"10.1016/j.jcpx.2023.100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a computational methodology developed for a high-order approximation of compressible fluid dynamics equations with discontinuities. The methodology is based on a discontinuous Galerkin spectral-element method (DGSEM) built upon a split discretization framework with summation-by-parts (SBP) property, which mimics the integration-by-parts operation in a discrete sense. To extend the split DGSEM framework to discontinuous cases, we implement a shock capturing method based on the entropy viscosity formulation. The developed high-order split-form DGSEM with shock-capturing methodology is subject to a series of evaluation on both one-dimensional and two-dimensional, continuous and discontinuous cases. Convergence of the method is demonstrated both for smooth and shocked cases that have analytical solutions. The 2D Riemann problem tests illustrate an accurate representation of all the relevant flow phenomena, such as shocks, contact discontinuities, and rarefaction waves. All test cases are able to run with a polynomial order of 7 or higher. The values of the tunable parameters related to the entropy viscosity are robust for both 1D and 2D test problems. We also show that higher-order approximations yield smaller errors than lower-order approximations, for the same number of total degrees of freedom.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"17 \",\"pages\":\"Article 100123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259005522300001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259005522300001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种计算方法,用于具有不连续性的可压缩流体动力学方程的高阶近似。该方法基于不连续伽辽金谱元法(DGSEM),该方法建立在具有逐部分求和(SBP)特性的分裂离散化框架上,在离散意义上模拟了逐部分积分运算。为了将分裂DGSEM框架扩展到不连续的情况,我们实现了一种基于熵粘度公式的冲击捕获方法。采用冲击捕获方法开发的高阶分裂形式DGSEM在一维和二维、连续和不连续情况下进行了一系列评估。对于具有解析解的光滑和冲击情况,证明了该方法的收敛性。二维黎曼问题测试说明了所有相关流动现象的精确表示,如冲击、接触不连续性和稀疏波。所有测试用例都能够以7或更高的多项式阶数运行。与熵粘度相关的可调参数的值对于1D和2D测试问题都是鲁棒的。我们还表明,对于相同数量的总自由度,高阶近似比低阶近似产生更小的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discontinuous Galerkin spectral element method for shock capturing with summation by parts properties

This paper presents a computational methodology developed for a high-order approximation of compressible fluid dynamics equations with discontinuities. The methodology is based on a discontinuous Galerkin spectral-element method (DGSEM) built upon a split discretization framework with summation-by-parts (SBP) property, which mimics the integration-by-parts operation in a discrete sense. To extend the split DGSEM framework to discontinuous cases, we implement a shock capturing method based on the entropy viscosity formulation. The developed high-order split-form DGSEM with shock-capturing methodology is subject to a series of evaluation on both one-dimensional and two-dimensional, continuous and discontinuous cases. Convergence of the method is demonstrated both for smooth and shocked cases that have analytical solutions. The 2D Riemann problem tests illustrate an accurate representation of all the relevant flow phenomena, such as shocks, contact discontinuities, and rarefaction waves. All test cases are able to run with a polynomial order of 7 or higher. The values of the tunable parameters related to the entropy viscosity are robust for both 1D and 2D test problems. We also show that higher-order approximations yield smaller errors than lower-order approximations, for the same number of total degrees of freedom.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
期刊最新文献
Editorial Board Monte Carlo radiative transfer peel off mechanism for spatially extended detectors Relative acceleration of orthonormal basis vectors for the geometric conduction blocks of the cardiac electric signal propagation on anisotropic curved surfaces Ensemble transport smoothing. Part I: Unified framework Ensemble transport smoothing. Part II: Nonlinear updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1