高效的可变单元格形状几何优化

Moritz Gubler, Marco Krummenacher, Hannes Huber, Stefan Goedecker
{"title":"高效的可变单元格形状几何优化","authors":"Moritz Gubler,&nbsp;Marco Krummenacher,&nbsp;Hannes Huber,&nbsp;Stefan Goedecker","doi":"10.1016/j.jcpx.2023.100131","DOIUrl":null,"url":null,"abstract":"<div><p>A fast and reliable geometry optimization algorithm is presented that optimizes atomic positions and lattice vectors simultaneously. Using a series of benchmarks, it is shown that the method presented in this paper outperforms in most cases the standard optimization methods implemented in popular codes such as Quantum ESPRESSO and VASP. To motivate the variable cell shape optimization method presented in here, the eigenvalues of the lattice Hessian matrix are investigated thoroughly. It is shown that they change depending on the shape of the cell and the number of particles inside the cell. For certain cell shapes the resulting condition number of the lattice matrix can grow quadratically with respect to the number of particles. By a coordinate transformation, which can be applied to all variable cell shape optimization methods, the undesirable conditioning of the lattice Hessian matrix is eliminated.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"17 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient variable cell shape geometry optimization\",\"authors\":\"Moritz Gubler,&nbsp;Marco Krummenacher,&nbsp;Hannes Huber,&nbsp;Stefan Goedecker\",\"doi\":\"10.1016/j.jcpx.2023.100131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A fast and reliable geometry optimization algorithm is presented that optimizes atomic positions and lattice vectors simultaneously. Using a series of benchmarks, it is shown that the method presented in this paper outperforms in most cases the standard optimization methods implemented in popular codes such as Quantum ESPRESSO and VASP. To motivate the variable cell shape optimization method presented in here, the eigenvalues of the lattice Hessian matrix are investigated thoroughly. It is shown that they change depending on the shape of the cell and the number of particles inside the cell. For certain cell shapes the resulting condition number of the lattice matrix can grow quadratically with respect to the number of particles. By a coordinate transformation, which can be applied to all variable cell shape optimization methods, the undesirable conditioning of the lattice Hessian matrix is eliminated.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"17 \",\"pages\":\"Article 100131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055223000094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055223000094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种快速可靠的几何优化算法,可以同时优化原子位置和晶格矢量。使用一系列基准测试表明,本文提出的方法在大多数情况下都优于在流行代码(如Quantum ESPRESSO和VASP)中实现的标准优化方法。为了激励本文提出的变单元形状优化方法,深入研究了格Hessian矩阵的特征值。研究表明,它们的变化取决于细胞的形状和细胞内粒子的数量。对于某些细胞形状,晶格矩阵的最终条件数可以相对于粒子数二次增长。通过可应用于所有可变单元形状优化方法的坐标变换,消除了格Hessian矩阵的不期望条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient variable cell shape geometry optimization

A fast and reliable geometry optimization algorithm is presented that optimizes atomic positions and lattice vectors simultaneously. Using a series of benchmarks, it is shown that the method presented in this paper outperforms in most cases the standard optimization methods implemented in popular codes such as Quantum ESPRESSO and VASP. To motivate the variable cell shape optimization method presented in here, the eigenvalues of the lattice Hessian matrix are investigated thoroughly. It is shown that they change depending on the shape of the cell and the number of particles inside the cell. For certain cell shapes the resulting condition number of the lattice matrix can grow quadratically with respect to the number of particles. By a coordinate transformation, which can be applied to all variable cell shape optimization methods, the undesirable conditioning of the lattice Hessian matrix is eliminated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
期刊最新文献
Editorial Board Monte Carlo radiative transfer peel off mechanism for spatially extended detectors Relative acceleration of orthonormal basis vectors for the geometric conduction blocks of the cardiac electric signal propagation on anisotropic curved surfaces Ensemble transport smoothing. Part I: Unified framework Ensemble transport smoothing. Part II: Nonlinear updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1