利用机器学习算法增强磁流体力学纳米流体通过可渗透拉伸片的流动

P. Priyadharshini, M. Vanitha Archana
{"title":"利用机器学习算法增强磁流体力学纳米流体通过可渗透拉伸片的流动","authors":"P. Priyadharshini,&nbsp;M. Vanitha Archana","doi":"10.1016/j.exco.2022.100093","DOIUrl":null,"url":null,"abstract":"<div><p>An incompressible MHD nanofluid boundary layer flow over a vertical stretching permeable surface employing Buongiorno’s design investigated by considering the convective states. The Brownian motion and thermophoresis effects are used to implement the nanofluid model. Operating the similarity transmutations, to transform the governing partial differential equations into ordinary differential equations consisting of the momentum, energy, and concentration fields and later worked by using a program written together with the stiffness shifting in Wolfram Language. The consequences of various physical parameters on the velocity, temperature, and concentration fields are analyzed, such as magnetic parameter <span><math><mi>M</mi></math></span>, Brownian motion parameter <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span>, thermophoresis parameter <span><math><mrow><mi>N</mi><mi>t</mi></mrow></math></span>, Lewis number <span><math><mrow><mi>L</mi><mi>e</mi></mrow></math></span>, temperature Biot number <span><math><mrow><mi>B</mi><msub><mrow><mi>i</mi></mrow><mrow><mi>θ</mi></mrow></msub></mrow></math></span>, concentration Biot number <span><math><mrow><mi>B</mi><msub><mrow><mi>i</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></math></span>, and suction parameter <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>. Furthermore, the Skin friction coefficient, local Nusselt, and local Sherwood numbers concerning magnetic parameter for various values of physical parameters (i.e. <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>, <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span>) are obtained graphically, then the outcome is validated with other recent works. Finally, introduced a new environment to employ machine learning by performing the sensitivity analysis based on the iterative method for predicting the Skin friction coefficient, reduced Nusselt number, and Sherwood number with respect to magnetic parameter for suction parameter and Brownian motion parameter. Machine learning algorithms provide a strong and quick data processing structure to enhance the actual research procedures and industrial application of fluid mechanics. These techniques have been upgraded and organized for fluid flow characteristics. The present optimization process has the potential for a new perspective on the metallurgical process, heat exchangers in electronics, and some medicinal applications.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Augmentation of magnetohydrodynamic nanofluid flow through a permeable stretching sheet employing Machine learning algorithm\",\"authors\":\"P. Priyadharshini,&nbsp;M. Vanitha Archana\",\"doi\":\"10.1016/j.exco.2022.100093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An incompressible MHD nanofluid boundary layer flow over a vertical stretching permeable surface employing Buongiorno’s design investigated by considering the convective states. The Brownian motion and thermophoresis effects are used to implement the nanofluid model. Operating the similarity transmutations, to transform the governing partial differential equations into ordinary differential equations consisting of the momentum, energy, and concentration fields and later worked by using a program written together with the stiffness shifting in Wolfram Language. The consequences of various physical parameters on the velocity, temperature, and concentration fields are analyzed, such as magnetic parameter <span><math><mi>M</mi></math></span>, Brownian motion parameter <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span>, thermophoresis parameter <span><math><mrow><mi>N</mi><mi>t</mi></mrow></math></span>, Lewis number <span><math><mrow><mi>L</mi><mi>e</mi></mrow></math></span>, temperature Biot number <span><math><mrow><mi>B</mi><msub><mrow><mi>i</mi></mrow><mrow><mi>θ</mi></mrow></msub></mrow></math></span>, concentration Biot number <span><math><mrow><mi>B</mi><msub><mrow><mi>i</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></mrow></math></span>, and suction parameter <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>. Furthermore, the Skin friction coefficient, local Nusselt, and local Sherwood numbers concerning magnetic parameter for various values of physical parameters (i.e. <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>w</mi></mrow></msub></math></span>, <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span>) are obtained graphically, then the outcome is validated with other recent works. Finally, introduced a new environment to employ machine learning by performing the sensitivity analysis based on the iterative method for predicting the Skin friction coefficient, reduced Nusselt number, and Sherwood number with respect to magnetic parameter for suction parameter and Brownian motion parameter. Machine learning algorithms provide a strong and quick data processing structure to enhance the actual research procedures and industrial application of fluid mechanics. These techniques have been upgraded and organized for fluid flow characteristics. The present optimization process has the potential for a new perspective on the metallurgical process, heat exchangers in electronics, and some medicinal applications.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"3 \",\"pages\":\"Article 100093\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X2200026X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X2200026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用Buongiorno的设计,通过考虑对流状态,研究了垂直拉伸可渗透表面上不可压缩的MHD纳米流体边界层流动。布朗运动和热泳效应被用来实现纳米流体模型。操作相似性嬗变,将控制偏微分方程转化为由动量场、能量场和浓度场组成的常微分方程,然后使用Wolfram语言编写的与刚度偏移一起编写的程序进行处理。分析了各种物理参数对速度场、温度场和浓度场的影响,如磁参数M、布朗运动参数Nb、热泳参数Nt、路易斯数Le、温度Biot数Biθ、浓度Biot数铋和吸力参数fw。此外,图形化地获得了各种物理参数值(即fw、Nb)的与磁性参数有关的皮肤摩擦系数、局部Nusselt和局部Sherwood数,然后用其他最近的工作验证了结果。最后,介绍了一种使用机器学习的新环境,通过基于迭代方法的灵敏度分析来预测吸力参数和布朗运动参数的Skin摩擦系数、Nusselt数和Sherwood数。机器学习算法提供了一种强大而快速的数据处理结构,以增强流体力学的实际研究程序和工业应用。这些技术已经针对流体流动特性进行了升级和组织。目前的优化工艺有可能为冶金工艺、电子换热器和一些医学应用提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Augmentation of magnetohydrodynamic nanofluid flow through a permeable stretching sheet employing Machine learning algorithm

An incompressible MHD nanofluid boundary layer flow over a vertical stretching permeable surface employing Buongiorno’s design investigated by considering the convective states. The Brownian motion and thermophoresis effects are used to implement the nanofluid model. Operating the similarity transmutations, to transform the governing partial differential equations into ordinary differential equations consisting of the momentum, energy, and concentration fields and later worked by using a program written together with the stiffness shifting in Wolfram Language. The consequences of various physical parameters on the velocity, temperature, and concentration fields are analyzed, such as magnetic parameter M, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le, temperature Biot number Biθ, concentration Biot number Biϕ, and suction parameter fw. Furthermore, the Skin friction coefficient, local Nusselt, and local Sherwood numbers concerning magnetic parameter for various values of physical parameters (i.e. fw, Nb) are obtained graphically, then the outcome is validated with other recent works. Finally, introduced a new environment to employ machine learning by performing the sensitivity analysis based on the iterative method for predicting the Skin friction coefficient, reduced Nusselt number, and Sherwood number with respect to magnetic parameter for suction parameter and Brownian motion parameter. Machine learning algorithms provide a strong and quick data processing structure to enhance the actual research procedures and industrial application of fluid mechanics. These techniques have been upgraded and organized for fluid flow characteristics. The present optimization process has the potential for a new perspective on the metallurgical process, heat exchangers in electronics, and some medicinal applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python Counterexamples for your calculus course Hölder’s inequality for shifted quantum integral operator Solving change of basis from Bernstein to Chebyshev polynomials Asymptotic behavior of the empirical checkerboard copula process for binary data: An educational presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1