{"title":"在细菌微宇宙中观察到不同的动力学阶段","authors":"Andrea Aparicio , Yang-Yu Liu","doi":"10.1016/j.engmic.2022.100063","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting biodiversity and dynamics of complex communities is a fundamental challenge in ecology. Leveraging bacterial microcosms with well-controlled laboratory conditions, Hu et al. recently performed a direct test of theory predicting that two community-level parameters (i.e., species pool size and inter-species interaction strength) dictate transitions between three dynamical phases: stable full coexistence, stable partial coexistence, and persistent fluctuations. Generally, communities experience species extinctions before they lose stability as either of the two parameters increases.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 1","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distinct dynamic phases observed in bacterial microcosms\",\"authors\":\"Andrea Aparicio , Yang-Yu Liu\",\"doi\":\"10.1016/j.engmic.2022.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting biodiversity and dynamics of complex communities is a fundamental challenge in ecology. Leveraging bacterial microcosms with well-controlled laboratory conditions, Hu et al. recently performed a direct test of theory predicting that two community-level parameters (i.e., species pool size and inter-species interaction strength) dictate transitions between three dynamical phases: stable full coexistence, stable partial coexistence, and persistent fluctuations. Generally, communities experience species extinctions before they lose stability as either of the two parameters increases.</p></div>\",\"PeriodicalId\":100478,\"journal\":{\"name\":\"Engineering Microbiology\",\"volume\":\"3 1\",\"pages\":\"Article 100063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667370322000522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370322000522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distinct dynamic phases observed in bacterial microcosms
Predicting biodiversity and dynamics of complex communities is a fundamental challenge in ecology. Leveraging bacterial microcosms with well-controlled laboratory conditions, Hu et al. recently performed a direct test of theory predicting that two community-level parameters (i.e., species pool size and inter-species interaction strength) dictate transitions between three dynamical phases: stable full coexistence, stable partial coexistence, and persistent fluctuations. Generally, communities experience species extinctions before they lose stability as either of the two parameters increases.