使用系统振荡定位光伏板的MPP

B.M.T. Ho;H.S.H. Chung;W.L. Lo
{"title":"使用系统振荡定位光伏板的MPP","authors":"B.M.T. Ho;H.S.H. Chung;W.L. Lo","doi":"10.1109/LPEL.2004.828443","DOIUrl":null,"url":null,"abstract":"This letter proposes the use of system oscillation in a perturbation-based maximum power point (MPP) tracker to locate the MPP of photovoltaic (PV) panels. Instead of using an explicit perturbation source, the tracker controller is designed to make the overall system self-oscillate, so that the duty cycle of the main switch in the power conversion stage (PCS) is inherently modulated with a small-amplitude variation at a predefined frequency around the required steady-state value. The tracking mechanism is based on comparing the ac component (due to the variation of the duty cycle) and the average value of the input voltage of the PCS to determine the quiescent duty cycle. The proposed technique does not approximate the panel characteristics and can globally locate the MPP under wide insolation conditions. The tracking capability has been verified experimentally with a 10-W PV panel in a controlled setup. Performances at the steady state and during the large-signal change of the insolation level have been studied.","PeriodicalId":100635,"journal":{"name":"IEEE Power Electronics Letters","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LPEL.2004.828443","citationCount":"41","resultStr":"{\"title\":\"Use of system oscillation to locate the MPP of PV panels\",\"authors\":\"B.M.T. Ho;H.S.H. Chung;W.L. Lo\",\"doi\":\"10.1109/LPEL.2004.828443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes the use of system oscillation in a perturbation-based maximum power point (MPP) tracker to locate the MPP of photovoltaic (PV) panels. Instead of using an explicit perturbation source, the tracker controller is designed to make the overall system self-oscillate, so that the duty cycle of the main switch in the power conversion stage (PCS) is inherently modulated with a small-amplitude variation at a predefined frequency around the required steady-state value. The tracking mechanism is based on comparing the ac component (due to the variation of the duty cycle) and the average value of the input voltage of the PCS to determine the quiescent duty cycle. The proposed technique does not approximate the panel characteristics and can globally locate the MPP under wide insolation conditions. The tracking capability has been verified experimentally with a 10-W PV panel in a controlled setup. Performances at the steady state and during the large-signal change of the insolation level have been studied.\",\"PeriodicalId\":100635,\"journal\":{\"name\":\"IEEE Power Electronics Letters\",\"volume\":\"2 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LPEL.2004.828443\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power Electronics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/1302111/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/1302111/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

这封信建议在基于扰动的最大功率点(MPP)跟踪器中使用系统振荡来定位光伏(PV)面板的MPP。跟踪器控制器不是使用显式扰动源,而是设计成使整个系统自激振荡,从而功率转换级(PCS)中主开关的占空比在所需稳态值附近的预定义频率下以小幅度变化进行固有调制。跟踪机制基于比较交流分量(由于占空比的变化)和PCS的输入电压的平均值来确定静态占空比。所提出的技术不近似面板特性,并且可以在宽日照条件下全局定位MPP。跟踪能力已经在受控设置中用10-W光伏板进行了实验验证。研究了太阳辐射水平在稳态和大信号变化期间的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of system oscillation to locate the MPP of PV panels
This letter proposes the use of system oscillation in a perturbation-based maximum power point (MPP) tracker to locate the MPP of photovoltaic (PV) panels. Instead of using an explicit perturbation source, the tracker controller is designed to make the overall system self-oscillate, so that the duty cycle of the main switch in the power conversion stage (PCS) is inherently modulated with a small-amplitude variation at a predefined frequency around the required steady-state value. The tracking mechanism is based on comparing the ac component (due to the variation of the duty cycle) and the average value of the input voltage of the PCS to determine the quiescent duty cycle. The proposed technique does not approximate the panel characteristics and can globally locate the MPP under wide insolation conditions. The tracking capability has been verified experimentally with a 10-W PV panel in a controlled setup. Performances at the steady state and during the large-signal change of the insolation level have been studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of contents IEEE Power Electronics Letters blank page IEEE Power Electronics Society Information Order form for reprints 2005 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1