{"title":"基于多头注意力的混合深度神经网络在航空发动机风险评估中的应用","authors":"Jian-Hang Li;Xin-Yue Gao;Xiang Lu;Guo-Dong Liu","doi":"10.1109/ACCESS.2023.3323843","DOIUrl":null,"url":null,"abstract":"Existing deep-learning models have limited applicability to aeroengine risk assessment owing to insufficient feature extraction capabilities and low robustness. This paper presents a hybrid deep neural network based on a Time2Vec time-embedding layer and multi-head attention mechanism for the proactive risk assessment of aeroengines. The proposed model uses quick access recorder data as input to identify risks associated with different types of failures and outputs two sets of labels: risk level and risk cause. The base of the proposed model combines a convolutional neural network and bidirectional long short-term memory, which are used to automatically extract temporal and spatial features from the input data to represent the system state and capturing irregular temporal trends. The Time2Vec layer facilitates automated processing of sequential data to make it easier for these deep-learning models to recognize patterns in the dataset. The multi-head attention mechanism further enhances the ability of the proposed model to capture and allocate information weights effectively. In comparative experiments, five benchmark models were compared with the proposed model, which demonstrated the best classification accuracy and computational efficiency as well as the most robustness against imbalanced data samples.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"11 ","pages":"113376-113389"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6287639/10005208/10278395.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-Head Attention-Based Hybrid Deep Neural Network for Aeroengine Risk Assessment\",\"authors\":\"Jian-Hang Li;Xin-Yue Gao;Xiang Lu;Guo-Dong Liu\",\"doi\":\"10.1109/ACCESS.2023.3323843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing deep-learning models have limited applicability to aeroengine risk assessment owing to insufficient feature extraction capabilities and low robustness. This paper presents a hybrid deep neural network based on a Time2Vec time-embedding layer and multi-head attention mechanism for the proactive risk assessment of aeroengines. The proposed model uses quick access recorder data as input to identify risks associated with different types of failures and outputs two sets of labels: risk level and risk cause. The base of the proposed model combines a convolutional neural network and bidirectional long short-term memory, which are used to automatically extract temporal and spatial features from the input data to represent the system state and capturing irregular temporal trends. The Time2Vec layer facilitates automated processing of sequential data to make it easier for these deep-learning models to recognize patterns in the dataset. The multi-head attention mechanism further enhances the ability of the proposed model to capture and allocate information weights effectively. In comparative experiments, five benchmark models were compared with the proposed model, which demonstrated the best classification accuracy and computational efficiency as well as the most robustness against imbalanced data samples.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"11 \",\"pages\":\"113376-113389\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6287639/10005208/10278395.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10278395/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10278395/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-Head Attention-Based Hybrid Deep Neural Network for Aeroengine Risk Assessment
Existing deep-learning models have limited applicability to aeroengine risk assessment owing to insufficient feature extraction capabilities and low robustness. This paper presents a hybrid deep neural network based on a Time2Vec time-embedding layer and multi-head attention mechanism for the proactive risk assessment of aeroengines. The proposed model uses quick access recorder data as input to identify risks associated with different types of failures and outputs two sets of labels: risk level and risk cause. The base of the proposed model combines a convolutional neural network and bidirectional long short-term memory, which are used to automatically extract temporal and spatial features from the input data to represent the system state and capturing irregular temporal trends. The Time2Vec layer facilitates automated processing of sequential data to make it easier for these deep-learning models to recognize patterns in the dataset. The multi-head attention mechanism further enhances the ability of the proposed model to capture and allocate information weights effectively. In comparative experiments, five benchmark models were compared with the proposed model, which demonstrated the best classification accuracy and computational efficiency as well as the most robustness against imbalanced data samples.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.