{"title":"电气传动中传导EMI的频域模型","authors":"E. Gubia;P. Sanchis;A. Ursua;J. Lopez;L. Marroyo","doi":"10.1109/LPEL.2005.848730","DOIUrl":null,"url":null,"abstract":"A harmful aspect of adjustable speed drives is the presence of large high-frequency stray currents. The most important, from the view of electromagnetic compatibility, are common-mode currents at the output and input sides of the converter. Currents at the output flow through the installation ground while those at the input flow through the grid ground. These common-mode currents can cause disturbances in other units that are connected within the same power section or placed close to the drive. This paper proposes a simulation model for a complete drive system based on the frequency domain. The model accurately reproduces the behavior of common-mode currents at any point of the system and allows the user to understand the influence of each system element on the currents. Thus, the model is useful both for designing filter structures and placing them at the proper position inside the adjustable speed drive. The model is validated by means of experimental results on a 5 kVA adjustable speed drive.","PeriodicalId":100635,"journal":{"name":"IEEE Power Electronics Letters","volume":"3 2","pages":"45-49"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LPEL.2005.848730","citationCount":"55","resultStr":"{\"title\":\"Frequency domain model of conducted EMI in electrical drives\",\"authors\":\"E. Gubia;P. Sanchis;A. Ursua;J. Lopez;L. Marroyo\",\"doi\":\"10.1109/LPEL.2005.848730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A harmful aspect of adjustable speed drives is the presence of large high-frequency stray currents. The most important, from the view of electromagnetic compatibility, are common-mode currents at the output and input sides of the converter. Currents at the output flow through the installation ground while those at the input flow through the grid ground. These common-mode currents can cause disturbances in other units that are connected within the same power section or placed close to the drive. This paper proposes a simulation model for a complete drive system based on the frequency domain. The model accurately reproduces the behavior of common-mode currents at any point of the system and allows the user to understand the influence of each system element on the currents. Thus, the model is useful both for designing filter structures and placing them at the proper position inside the adjustable speed drive. The model is validated by means of experimental results on a 5 kVA adjustable speed drive.\",\"PeriodicalId\":100635,\"journal\":{\"name\":\"IEEE Power Electronics Letters\",\"volume\":\"3 2\",\"pages\":\"45-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LPEL.2005.848730\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power Electronics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/1461370/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/1461370/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequency domain model of conducted EMI in electrical drives
A harmful aspect of adjustable speed drives is the presence of large high-frequency stray currents. The most important, from the view of electromagnetic compatibility, are common-mode currents at the output and input sides of the converter. Currents at the output flow through the installation ground while those at the input flow through the grid ground. These common-mode currents can cause disturbances in other units that are connected within the same power section or placed close to the drive. This paper proposes a simulation model for a complete drive system based on the frequency domain. The model accurately reproduces the behavior of common-mode currents at any point of the system and allows the user to understand the influence of each system element on the currents. Thus, the model is useful both for designing filter structures and placing them at the proper position inside the adjustable speed drive. The model is validated by means of experimental results on a 5 kVA adjustable speed drive.