控制振荡传播的最优网络干预

Ahmed Allibhoy;Federico Celi;Fabio Pasqualetti;Jorge Cortés
{"title":"控制振荡传播的最优网络干预","authors":"Ahmed Allibhoy;Federico Celi;Fabio Pasqualetti;Jorge Cortés","doi":"10.1109/OJCSYS.2022.3193127","DOIUrl":null,"url":null,"abstract":"Oscillations are a prominent feature of neuronal activity and are associated with a variety of phenomena in brain tissue, both healthy and unhealthy. Characterizing how oscillations spread through regions of the brain is of particular interest when studying countermeasures to pathological brain synchronizations. This paper models neuronal activity using networks of interconnected excitatory-inhibitory pairs with linear threshold dynamics, and presents strategies to design networks with desired robustness properties. In particular, we develop a dynamical description of the brain through a network where the state of each node models the firing rate of a region of neurons and where edges capture the structural connectivity between the regions. We characterize the presence of oscillations and study conditions on their spreading. We also discuss strategies to optimally design networks which are robust to oscillation spreading. We demonstrate our results with numerical simulations.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"141-151"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09854194.pdf","citationCount":"4","resultStr":"{\"title\":\"Optimal Network Interventions to Control the Spreading of Oscillations\",\"authors\":\"Ahmed Allibhoy;Federico Celi;Fabio Pasqualetti;Jorge Cortés\",\"doi\":\"10.1109/OJCSYS.2022.3193127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oscillations are a prominent feature of neuronal activity and are associated with a variety of phenomena in brain tissue, both healthy and unhealthy. Characterizing how oscillations spread through regions of the brain is of particular interest when studying countermeasures to pathological brain synchronizations. This paper models neuronal activity using networks of interconnected excitatory-inhibitory pairs with linear threshold dynamics, and presents strategies to design networks with desired robustness properties. In particular, we develop a dynamical description of the brain through a network where the state of each node models the firing rate of a region of neurons and where edges capture the structural connectivity between the regions. We characterize the presence of oscillations and study conditions on their spreading. We also discuss strategies to optimally design networks which are robust to oscillation spreading. We demonstrate our results with numerical simulations.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"1 \",\"pages\":\"141-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552933/9683993/09854194.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9854194/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9854194/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

振荡是神经元活动的一个显著特征,与脑组织中的各种现象有关,包括健康和不健康。在研究病理性大脑同步的对策时,描述振荡如何在大脑各区域传播尤其令人感兴趣。本文使用具有线性阈值动力学的互连兴奋-抑制对网络对神经元活动进行建模,并提出了设计具有所需鲁棒性的网络的策略。特别是,我们通过一个网络对大脑进行了动态描述,其中每个节点的状态对神经元区域的放电率进行建模,边缘捕捉区域之间的结构连接。我们描述了振荡的存在,并研究了振荡传播的条件。我们还讨论了优化设计对振荡传播具有鲁棒性的网络的策略。我们用数值模拟来证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Network Interventions to Control the Spreading of Oscillations
Oscillations are a prominent feature of neuronal activity and are associated with a variety of phenomena in brain tissue, both healthy and unhealthy. Characterizing how oscillations spread through regions of the brain is of particular interest when studying countermeasures to pathological brain synchronizations. This paper models neuronal activity using networks of interconnected excitatory-inhibitory pairs with linear threshold dynamics, and presents strategies to design networks with desired robustness properties. In particular, we develop a dynamical description of the brain through a network where the state of each node models the firing rate of a region of neurons and where edges capture the structural connectivity between the regions. We characterize the presence of oscillations and study conditions on their spreading. We also discuss strategies to optimally design networks which are robust to oscillation spreading. We demonstrate our results with numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Control of Endemic Epidemic Diseases With Behavioral Response Resilient Multi-Agent Systems Against Denial of Service Attacks via Adaptive and Activatable Network Layers Resiliency Through Collaboration in Heterogeneous Multi-Robot Systems Resilient Synchronization of Pulse-Coupled Oscillators Under Stealthy Attacks Pareto-Optimal Event-Based Scheme for Station and Inter-Station Control of Electric and Automated Buses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1