James Chin-Jen Pang;Hessam Mahdavifar;S. Sandeep Pradhan
{"title":"具有大最小距离的二进制码大小的新界","authors":"James Chin-Jen Pang;Hessam Mahdavifar;S. Sandeep Pradhan","doi":"10.1109/JSAIT.2023.3295836","DOIUrl":null,"url":null,"abstract":"Let <inline-formula> <tex-math notation=\"LaTeX\">$A(n, d)$ </tex-math></inline-formula> denote the maximum size of a binary code of length <inline-formula> <tex-math notation=\"LaTeX\">$n$ </tex-math></inline-formula> and minimum Hamming distance <inline-formula> <tex-math notation=\"LaTeX\">$d$ </tex-math></inline-formula>. Studying <inline-formula> <tex-math notation=\"LaTeX\">$A(n, d)$ </tex-math></inline-formula>, including efforts to determine it as well to derive bounds on <inline-formula> <tex-math notation=\"LaTeX\">$A(n, d)$ </tex-math></inline-formula> for large <inline-formula> <tex-math notation=\"LaTeX\">$n$ </tex-math></inline-formula>’s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on <inline-formula> <tex-math notation=\"LaTeX\">$A(n, d)$ </tex-math></inline-formula> in the large-minimum distance regime, in particular, when <inline-formula> <tex-math notation=\"LaTeX\">$d = n/2 - \\Omega (\\sqrt {n})$ </tex-math></inline-formula>. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length <inline-formula> <tex-math notation=\"LaTeX\">$n= 2^{m} -1$ </tex-math></inline-formula>, distance <inline-formula> <tex-math notation=\"LaTeX\">$d \\geq n/2 - 2^{c-1}\\sqrt {n}$ </tex-math></inline-formula>, and size <inline-formula> <tex-math notation=\"LaTeX\">$n^{c+1/2}$ </tex-math></inline-formula>, for any <inline-formula> <tex-math notation=\"LaTeX\">$m\\geq 4$ </tex-math></inline-formula> and any integer <inline-formula> <tex-math notation=\"LaTeX\">$c$ </tex-math></inline-formula> with <inline-formula> <tex-math notation=\"LaTeX\">$0 \\leq c \\leq m/2 - 1$ </tex-math></inline-formula>. These code parameters are slightly worse than those of the Delsarte–Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance <inline-formula> <tex-math notation=\"LaTeX\">$d$ </tex-math></inline-formula>, in particular, when <inline-formula> <tex-math notation=\"LaTeX\">$d = n/2 - \\Omega (n^{2/3})$ </tex-math></inline-formula>. Furthermore, by leveraging a Fourier-analytic view of Delsarte’s linear program, upper bounds on <inline-formula> <tex-math notation=\"LaTeX\">$A(n, \\left \\lceil{ n/2 - \\rho \\sqrt {n}\\, }\\right \\rceil)$ </tex-math></inline-formula> with <inline-formula> <tex-math notation=\"LaTeX\">$\\rho \\in (0.5, 9.5)$ </tex-math></inline-formula> are obtained that scale polynomially in <inline-formula> <tex-math notation=\"LaTeX\">$n$ </tex-math></inline-formula>. To the best of authors’ knowledge, the upper bound due to Barg and Nogin (2006) is the only previously known upper bound that scale polynomially in <inline-formula> <tex-math notation=\"LaTeX\">$n$ </tex-math></inline-formula> in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"219-231"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Bounds on the Size of Binary Codes With Large Minimum Distance\",\"authors\":\"James Chin-Jen Pang;Hessam Mahdavifar;S. Sandeep Pradhan\",\"doi\":\"10.1109/JSAIT.2023.3295836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <inline-formula> <tex-math notation=\\\"LaTeX\\\">$A(n, d)$ </tex-math></inline-formula> denote the maximum size of a binary code of length <inline-formula> <tex-math notation=\\\"LaTeX\\\">$n$ </tex-math></inline-formula> and minimum Hamming distance <inline-formula> <tex-math notation=\\\"LaTeX\\\">$d$ </tex-math></inline-formula>. Studying <inline-formula> <tex-math notation=\\\"LaTeX\\\">$A(n, d)$ </tex-math></inline-formula>, including efforts to determine it as well to derive bounds on <inline-formula> <tex-math notation=\\\"LaTeX\\\">$A(n, d)$ </tex-math></inline-formula> for large <inline-formula> <tex-math notation=\\\"LaTeX\\\">$n$ </tex-math></inline-formula>’s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on <inline-formula> <tex-math notation=\\\"LaTeX\\\">$A(n, d)$ </tex-math></inline-formula> in the large-minimum distance regime, in particular, when <inline-formula> <tex-math notation=\\\"LaTeX\\\">$d = n/2 - \\\\Omega (\\\\sqrt {n})$ </tex-math></inline-formula>. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length <inline-formula> <tex-math notation=\\\"LaTeX\\\">$n= 2^{m} -1$ </tex-math></inline-formula>, distance <inline-formula> <tex-math notation=\\\"LaTeX\\\">$d \\\\geq n/2 - 2^{c-1}\\\\sqrt {n}$ </tex-math></inline-formula>, and size <inline-formula> <tex-math notation=\\\"LaTeX\\\">$n^{c+1/2}$ </tex-math></inline-formula>, for any <inline-formula> <tex-math notation=\\\"LaTeX\\\">$m\\\\geq 4$ </tex-math></inline-formula> and any integer <inline-formula> <tex-math notation=\\\"LaTeX\\\">$c$ </tex-math></inline-formula> with <inline-formula> <tex-math notation=\\\"LaTeX\\\">$0 \\\\leq c \\\\leq m/2 - 1$ </tex-math></inline-formula>. These code parameters are slightly worse than those of the Delsarte–Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance <inline-formula> <tex-math notation=\\\"LaTeX\\\">$d$ </tex-math></inline-formula>, in particular, when <inline-formula> <tex-math notation=\\\"LaTeX\\\">$d = n/2 - \\\\Omega (n^{2/3})$ </tex-math></inline-formula>. Furthermore, by leveraging a Fourier-analytic view of Delsarte’s linear program, upper bounds on <inline-formula> <tex-math notation=\\\"LaTeX\\\">$A(n, \\\\left \\\\lceil{ n/2 - \\\\rho \\\\sqrt {n}\\\\, }\\\\right \\\\rceil)$ </tex-math></inline-formula> with <inline-formula> <tex-math notation=\\\"LaTeX\\\">$\\\\rho \\\\in (0.5, 9.5)$ </tex-math></inline-formula> are obtained that scale polynomially in <inline-formula> <tex-math notation=\\\"LaTeX\\\">$n$ </tex-math></inline-formula>. To the best of authors’ knowledge, the upper bound due to Barg and Nogin (2006) is the only previously known upper bound that scale polynomially in <inline-formula> <tex-math notation=\\\"LaTeX\\\">$n$ </tex-math></inline-formula> in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"219-231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10185152/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10185152/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Bounds on the Size of Binary Codes With Large Minimum Distance
Let $A(n, d)$ denote the maximum size of a binary code of length $n$ and minimum Hamming distance $d$ . Studying $A(n, d)$ , including efforts to determine it as well to derive bounds on $A(n, d)$ for large $n$ ’s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on $A(n, d)$ in the large-minimum distance regime, in particular, when $d = n/2 - \Omega (\sqrt {n})$ . We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length $n= 2^{m} -1$ , distance $d \geq n/2 - 2^{c-1}\sqrt {n}$ , and size $n^{c+1/2}$ , for any $m\geq 4$ and any integer $c$ with $0 \leq c \leq m/2 - 1$ . These code parameters are slightly worse than those of the Delsarte–Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance $d$ , in particular, when $d = n/2 - \Omega (n^{2/3})$ . Furthermore, by leveraging a Fourier-analytic view of Delsarte’s linear program, upper bounds on $A(n, \left \lceil{ n/2 - \rho \sqrt {n}\, }\right \rceil)$ with $\rho \in (0.5, 9.5)$ are obtained that scale polynomially in $n$ . To the best of authors’ knowledge, the upper bound due to Barg and Nogin (2006) is the only previously known upper bound that scale polynomially in $n$ in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.