Anthony Gómez-Fonseca;Roxana Smarandache;David G. M. Mitchell
{"title":"准循环LDPC码Tanner图中一种有效的循环计数策略","authors":"Anthony Gómez-Fonseca;Roxana Smarandache;David G. M. Mitchell","doi":"10.1109/JSAIT.2023.3315585","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient strategy to enumerate the number of \n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\n-cycles, \n<inline-formula> <tex-math>$g\\leq k < 2g$ </tex-math></inline-formula>\n, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth \n<inline-formula> <tex-math>$g$ </tex-math></inline-formula>\n using its polynomial parity-check matrix \n<inline-formula> <tex-math>$H$ </tex-math></inline-formula>\n. This strategy works for both \n<inline-formula> <tex-math>$(d_{v},d_{c})$ </tex-math></inline-formula>\n-regular and irregular QC-LDPC codes. In this approach, we note that the \n<inline-formula> <tex-math>$m$ </tex-math></inline-formula>\nth power of the polynomial adjacency matrix can be used to describe walks of length \n<inline-formula> <tex-math>$m$ </tex-math></inline-formula>\n in the protograph and can therefore be sufficiently described by the matrices \n<inline-formula> <tex-math>$B_{m}(H) \\triangleq (HH^{\\mathsf {T}})^{\\lfloor {m/2}\\rfloor }H^{(m\\mod 2)}$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$m\\geq 0$ </tex-math></inline-formula>\n. We provide formulas for the number of \n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\n-cycles, \n<inline-formula> <tex-math>$\\mathcal {N}_{k}$ </tex-math></inline-formula>\n, by just taking into account repetitions in some multisets constructed from the matrices \n<inline-formula> <tex-math>$B_{m}(H)$ </tex-math></inline-formula>\n. This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the \n<inline-formula> <tex-math>$3\\times n_{v}$ </tex-math></inline-formula>\n fully-connected protograph, the complexity of determining \n<inline-formula> <tex-math>$\\mathcal {N}_{k}$ </tex-math></inline-formula>\n, for \n<inline-formula> <tex-math>$k=4,6,8,10$ </tex-math></inline-formula>\n and 12, is \n<inline-formula> <tex-math>$O(n_{v}^{2}\\log (N))$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$O(n_{v}^{2}\\log (n_{v})\\log (N))$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$O(n_{v}^{4}\\log ^{4}(n_{v})\\log (N))$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$O(n_{v}^{4}\\log (n_{v})\\log (N))$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$O(n_{v}^{6}\\log ^{6}(n_{v})\\log (N))$ </tex-math></inline-formula>\n, respectively. The complexity, depending logarithmically on the lifting factor \n<inline-formula> <tex-math>$N$ </tex-math></inline-formula>\n, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"499-513"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Strategy to Count Cycles in the Tanner Graph of Quasi-Cyclic LDPC Codes\",\"authors\":\"Anthony Gómez-Fonseca;Roxana Smarandache;David G. M. Mitchell\",\"doi\":\"10.1109/JSAIT.2023.3315585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an efficient strategy to enumerate the number of \\n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\\n-cycles, \\n<inline-formula> <tex-math>$g\\\\leq k < 2g$ </tex-math></inline-formula>\\n, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth \\n<inline-formula> <tex-math>$g$ </tex-math></inline-formula>\\n using its polynomial parity-check matrix \\n<inline-formula> <tex-math>$H$ </tex-math></inline-formula>\\n. This strategy works for both \\n<inline-formula> <tex-math>$(d_{v},d_{c})$ </tex-math></inline-formula>\\n-regular and irregular QC-LDPC codes. In this approach, we note that the \\n<inline-formula> <tex-math>$m$ </tex-math></inline-formula>\\nth power of the polynomial adjacency matrix can be used to describe walks of length \\n<inline-formula> <tex-math>$m$ </tex-math></inline-formula>\\n in the protograph and can therefore be sufficiently described by the matrices \\n<inline-formula> <tex-math>$B_{m}(H) \\\\triangleq (HH^{\\\\mathsf {T}})^{\\\\lfloor {m/2}\\\\rfloor }H^{(m\\\\mod 2)}$ </tex-math></inline-formula>\\n, where \\n<inline-formula> <tex-math>$m\\\\geq 0$ </tex-math></inline-formula>\\n. We provide formulas for the number of \\n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\\n-cycles, \\n<inline-formula> <tex-math>$\\\\mathcal {N}_{k}$ </tex-math></inline-formula>\\n, by just taking into account repetitions in some multisets constructed from the matrices \\n<inline-formula> <tex-math>$B_{m}(H)$ </tex-math></inline-formula>\\n. This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the \\n<inline-formula> <tex-math>$3\\\\times n_{v}$ </tex-math></inline-formula>\\n fully-connected protograph, the complexity of determining \\n<inline-formula> <tex-math>$\\\\mathcal {N}_{k}$ </tex-math></inline-formula>\\n, for \\n<inline-formula> <tex-math>$k=4,6,8,10$ </tex-math></inline-formula>\\n and 12, is \\n<inline-formula> <tex-math>$O(n_{v}^{2}\\\\log (N))$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$O(n_{v}^{2}\\\\log (n_{v})\\\\log (N))$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$O(n_{v}^{4}\\\\log ^{4}(n_{v})\\\\log (N))$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$O(n_{v}^{4}\\\\log (n_{v})\\\\log (N))$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$O(n_{v}^{6}\\\\log ^{6}(n_{v})\\\\log (N))$ </tex-math></inline-formula>\\n, respectively. The complexity, depending logarithmically on the lifting factor \\n<inline-formula> <tex-math>$N$ </tex-math></inline-formula>\\n, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"499-513\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10251427/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10251427/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Strategy to Count Cycles in the Tanner Graph of Quasi-Cyclic LDPC Codes
In this paper, we present an efficient strategy to enumerate the number of
$k$
-cycles,
$g\leq k < 2g$
, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth
$g$
using its polynomial parity-check matrix
$H$
. This strategy works for both
$(d_{v},d_{c})$
-regular and irregular QC-LDPC codes. In this approach, we note that the
$m$
th power of the polynomial adjacency matrix can be used to describe walks of length
$m$
in the protograph and can therefore be sufficiently described by the matrices
$B_{m}(H) \triangleq (HH^{\mathsf {T}})^{\lfloor {m/2}\rfloor }H^{(m\mod 2)}$
, where
$m\geq 0$
. We provide formulas for the number of
$k$
-cycles,
$\mathcal {N}_{k}$
, by just taking into account repetitions in some multisets constructed from the matrices
$B_{m}(H)$
. This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the
$3\times n_{v}$
fully-connected protograph, the complexity of determining
$\mathcal {N}_{k}$
, for
$k=4,6,8,10$
and 12, is
$O(n_{v}^{2}\log (N))$
,
$O(n_{v}^{2}\log (n_{v})\log (N))$
,
$O(n_{v}^{4}\log ^{4}(n_{v})\log (N))$
,
$O(n_{v}^{4}\log (n_{v})\log (N))$
and
$O(n_{v}^{6}\log ^{6}(n_{v})\log (N))$
, respectively. The complexity, depending logarithmically on the lifting factor
$N$
, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.