线性网络纠错编码的再认识

Xuan Guang;Raymond W. Yeung
{"title":"线性网络纠错编码的再认识","authors":"Xuan Guang;Raymond W. Yeung","doi":"10.1109/JSAIT.2023.3317941","DOIUrl":null,"url":null,"abstract":"We consider linear network erro correction (LNEC) coding when errors may occur on the edges of a communication network of which the topology is known. In this paper, we first present a framework of additive adversarial network for LNEC coding, and then prove the equivalence of two well-known LNEC coding approaches, which can be unified under this framework. Furthermore, by developing a graph-theoretic approach, we obtain a significantly enhanced characterization of the error correction capability of LNEC codes in terms of the minimum distances at the sink nodes. Specifically, in order to ensure that an LNEC code can correct up to \n<inline-formula> <tex-math>$r$ </tex-math></inline-formula>\n errors at a sink node \n<inline-formula> <tex-math>$t$ </tex-math></inline-formula>\n, it suffices to ensure that this code can correct every error vector in a reduced set of error vectors; and on the other hand, this LNEC code in fact can correct every error vector in an enlarged set of error vectors. In general, the size of this reduced set is considerably smaller than the number of error vectors with Hamming weight not larger than \n<inline-formula> <tex-math>$r$ </tex-math></inline-formula>\n, and the size of this enlarged set is considerably larger than the same number. This result has the important implication that the computational complexities for decoding and for code construction can be significantly reduced.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"514-523"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Revisit of Linear Network Error Correction Coding\",\"authors\":\"Xuan Guang;Raymond W. Yeung\",\"doi\":\"10.1109/JSAIT.2023.3317941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider linear network erro correction (LNEC) coding when errors may occur on the edges of a communication network of which the topology is known. In this paper, we first present a framework of additive adversarial network for LNEC coding, and then prove the equivalence of two well-known LNEC coding approaches, which can be unified under this framework. Furthermore, by developing a graph-theoretic approach, we obtain a significantly enhanced characterization of the error correction capability of LNEC codes in terms of the minimum distances at the sink nodes. Specifically, in order to ensure that an LNEC code can correct up to \\n<inline-formula> <tex-math>$r$ </tex-math></inline-formula>\\n errors at a sink node \\n<inline-formula> <tex-math>$t$ </tex-math></inline-formula>\\n, it suffices to ensure that this code can correct every error vector in a reduced set of error vectors; and on the other hand, this LNEC code in fact can correct every error vector in an enlarged set of error vectors. In general, the size of this reduced set is considerably smaller than the number of error vectors with Hamming weight not larger than \\n<inline-formula> <tex-math>$r$ </tex-math></inline-formula>\\n, and the size of this enlarged set is considerably larger than the same number. This result has the important implication that the computational complexities for decoding and for code construction can be significantly reduced.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"514-523\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10258378/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10258378/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当拓扑结构已知的通信网络的边缘可能出现错误时,我们考虑线性网络纠错(LNEC)编码。在本文中,我们首先提出了一个用于LNEC编码的加性对抗性网络框架,然后证明了两种众所周知的LNEC编码方法的等价性,它们可以在该框架下统一。此外,通过开发图论方法,我们获得了LNEC码在汇聚节点处的最小距离方面的纠错能力的显著增强的表征。具体地,为了确保LNEC代码能够在汇聚节点$t$处校正高达$r$的错误,只要确保该代码能够校正误差向量的缩减集合中的每个误差向量就足够了;而另一方面该LNEC码实际上可以校正放大的一组误差矢量中的每个误差矢量。通常,该缩减集的大小明显小于汉明权重不大于$r$的误差向量的数量,并且该放大集的大小显著大于相同数量。这一结果具有重要意义,即解码和代码构造的计算复杂性可以显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Revisit of Linear Network Error Correction Coding
We consider linear network erro correction (LNEC) coding when errors may occur on the edges of a communication network of which the topology is known. In this paper, we first present a framework of additive adversarial network for LNEC coding, and then prove the equivalence of two well-known LNEC coding approaches, which can be unified under this framework. Furthermore, by developing a graph-theoretic approach, we obtain a significantly enhanced characterization of the error correction capability of LNEC codes in terms of the minimum distances at the sink nodes. Specifically, in order to ensure that an LNEC code can correct up to $r$ errors at a sink node $t$ , it suffices to ensure that this code can correct every error vector in a reduced set of error vectors; and on the other hand, this LNEC code in fact can correct every error vector in an enlarged set of error vectors. In general, the size of this reduced set is considerably smaller than the number of error vectors with Hamming weight not larger than $r$ , and the size of this enlarged set is considerably larger than the same number. This result has the important implication that the computational complexities for decoding and for code construction can be significantly reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Source Coding for Markov Sources With Partial Memoryless Side Information at the Decoder Deviation From Maximal Entanglement for Mid-Spectrum Eigenstates of Local Hamiltonians Statistical Inference With Limited Memory: A Survey Tightening Continuity Bounds for Entropies and Bounds on Quantum Capacities Dynamic Group Testing to Control and Monitor Disease Progression in a Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1