A. E. Abouelregal, A. H. Sofiyev, H. M. Sedighi, M. A. Fahmy
{"title":"具有温度相关性质的非简单热弹性圆柱体的Caputo-Fabrizio分数阶导数广义热方程","authors":"A. E. Abouelregal, A. H. Sofiyev, H. M. Sedighi, M. A. Fahmy","doi":"10.1134/S1029959923020108","DOIUrl":null,"url":null,"abstract":"<p>In the current paper, a generalized thermoelastic model with two-temperature characteristics, including a heat transfer equation with fractional derivatives and phase lags, is proposed. The Caputo–Fabrizio fractional differential operator is used to derive a new model and to solve the singular kernel problem of conventional fractional models. The suggested model is then exploited to investigate responses of an isotropic cylinder with variable properties and boundaries constantly exposed to thermal or mechanical loads. The elastic cylinder is also assumed to be permeated with a constant magnetic field and a continuous heat source. The governing partial differential equations are formulated in dimensionless forms and then solved by the Laplace transform technique together with its numerical inversions. The effects of the heat source intensity and fractional order parameter on the thermal and mechanical responses are addressed in detail. To verify the integrity of the obtained results, some comparative studies are conducted by considering different thermoelastic models.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 2","pages":"224 - 240"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized Heat Equation with the Caputo–Fabrizio Fractional Derivative for a Nonsimple Thermoelastic Cylinder with Temperature-Dependent Properties\",\"authors\":\"A. E. Abouelregal, A. H. Sofiyev, H. M. Sedighi, M. A. Fahmy\",\"doi\":\"10.1134/S1029959923020108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the current paper, a generalized thermoelastic model with two-temperature characteristics, including a heat transfer equation with fractional derivatives and phase lags, is proposed. The Caputo–Fabrizio fractional differential operator is used to derive a new model and to solve the singular kernel problem of conventional fractional models. The suggested model is then exploited to investigate responses of an isotropic cylinder with variable properties and boundaries constantly exposed to thermal or mechanical loads. The elastic cylinder is also assumed to be permeated with a constant magnetic field and a continuous heat source. The governing partial differential equations are formulated in dimensionless forms and then solved by the Laplace transform technique together with its numerical inversions. The effects of the heat source intensity and fractional order parameter on the thermal and mechanical responses are addressed in detail. To verify the integrity of the obtained results, some comparative studies are conducted by considering different thermoelastic models.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"26 2\",\"pages\":\"224 - 240\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959923020108\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923020108","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Generalized Heat Equation with the Caputo–Fabrizio Fractional Derivative for a Nonsimple Thermoelastic Cylinder with Temperature-Dependent Properties
In the current paper, a generalized thermoelastic model with two-temperature characteristics, including a heat transfer equation with fractional derivatives and phase lags, is proposed. The Caputo–Fabrizio fractional differential operator is used to derive a new model and to solve the singular kernel problem of conventional fractional models. The suggested model is then exploited to investigate responses of an isotropic cylinder with variable properties and boundaries constantly exposed to thermal or mechanical loads. The elastic cylinder is also assumed to be permeated with a constant magnetic field and a continuous heat source. The governing partial differential equations are formulated in dimensionless forms and then solved by the Laplace transform technique together with its numerical inversions. The effects of the heat source intensity and fractional order parameter on the thermal and mechanical responses are addressed in detail. To verify the integrity of the obtained results, some comparative studies are conducted by considering different thermoelastic models.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.