{"title":"一个受限三涡问题的动力学方面","authors":"Sreethin Sreedharan Kallyadan;Priyanka Shukla","doi":"10.1093/imamat/hxab043","DOIUrl":null,"url":null,"abstract":"Point vortex systems that include vortices with constant coordinate functions are largely unexplored, even though they have reasonable physical interpretations in the geophysical context. Here, we investigate the dynamical aspects of the restricted three-vortex problem when one of the point vortices is assumed to be fixed at a location in the plane. The motion of the passive tracer is explored from a rotating frame of reference within which the free vortex with non-zero circulation remains stationary. By using basic dynamical system theory, it is shown that the vortex motion is always bounded, and any configuration of the three vortices must go through at least one collinear state. The present analysis reveals that any non-relative equilibrium solution of the vortex system either has periodic inter-vortex distances or it will asymptotically converge to a relative equilibrium configuration. The initial conditions required for different types of motion are explained in detail by exploiting the Hamiltonian structure of the problem. The underlying effects of a fixed vortex on the motion of vortices are also explored.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"87 1","pages":"1-19"},"PeriodicalIF":1.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamical aspects of a restricted three-vortex problem\",\"authors\":\"Sreethin Sreedharan Kallyadan;Priyanka Shukla\",\"doi\":\"10.1093/imamat/hxab043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point vortex systems that include vortices with constant coordinate functions are largely unexplored, even though they have reasonable physical interpretations in the geophysical context. Here, we investigate the dynamical aspects of the restricted three-vortex problem when one of the point vortices is assumed to be fixed at a location in the plane. The motion of the passive tracer is explored from a rotating frame of reference within which the free vortex with non-zero circulation remains stationary. By using basic dynamical system theory, it is shown that the vortex motion is always bounded, and any configuration of the three vortices must go through at least one collinear state. The present analysis reveals that any non-relative equilibrium solution of the vortex system either has periodic inter-vortex distances or it will asymptotically converge to a relative equilibrium configuration. The initial conditions required for different types of motion are explained in detail by exploiting the Hamiltonian structure of the problem. The underlying effects of a fixed vortex on the motion of vortices are also explored.\",\"PeriodicalId\":56297,\"journal\":{\"name\":\"IMA Journal of Applied Mathematics\",\"volume\":\"87 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9717008/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9717008/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamical aspects of a restricted three-vortex problem
Point vortex systems that include vortices with constant coordinate functions are largely unexplored, even though they have reasonable physical interpretations in the geophysical context. Here, we investigate the dynamical aspects of the restricted three-vortex problem when one of the point vortices is assumed to be fixed at a location in the plane. The motion of the passive tracer is explored from a rotating frame of reference within which the free vortex with non-zero circulation remains stationary. By using basic dynamical system theory, it is shown that the vortex motion is always bounded, and any configuration of the three vortices must go through at least one collinear state. The present analysis reveals that any non-relative equilibrium solution of the vortex system either has periodic inter-vortex distances or it will asymptotically converge to a relative equilibrium configuration. The initial conditions required for different types of motion are explained in detail by exploiting the Hamiltonian structure of the problem. The underlying effects of a fixed vortex on the motion of vortices are also explored.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.