{"title":"一个受限三涡问题的动力学方面","authors":"Sreethin Sreedharan Kallyadan;Priyanka Shukla","doi":"10.1093/imamat/hxab043","DOIUrl":null,"url":null,"abstract":"Point vortex systems that include vortices with constant coordinate functions are largely unexplored, even though they have reasonable physical interpretations in the geophysical context. Here, we investigate the dynamical aspects of the restricted three-vortex problem when one of the point vortices is assumed to be fixed at a location in the plane. The motion of the passive tracer is explored from a rotating frame of reference within which the free vortex with non-zero circulation remains stationary. By using basic dynamical system theory, it is shown that the vortex motion is always bounded, and any configuration of the three vortices must go through at least one collinear state. The present analysis reveals that any non-relative equilibrium solution of the vortex system either has periodic inter-vortex distances or it will asymptotically converge to a relative equilibrium configuration. The initial conditions required for different types of motion are explained in detail by exploiting the Hamiltonian structure of the problem. The underlying effects of a fixed vortex on the motion of vortices are also explored.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamical aspects of a restricted three-vortex problem\",\"authors\":\"Sreethin Sreedharan Kallyadan;Priyanka Shukla\",\"doi\":\"10.1093/imamat/hxab043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point vortex systems that include vortices with constant coordinate functions are largely unexplored, even though they have reasonable physical interpretations in the geophysical context. Here, we investigate the dynamical aspects of the restricted three-vortex problem when one of the point vortices is assumed to be fixed at a location in the plane. The motion of the passive tracer is explored from a rotating frame of reference within which the free vortex with non-zero circulation remains stationary. By using basic dynamical system theory, it is shown that the vortex motion is always bounded, and any configuration of the three vortices must go through at least one collinear state. The present analysis reveals that any non-relative equilibrium solution of the vortex system either has periodic inter-vortex distances or it will asymptotically converge to a relative equilibrium configuration. The initial conditions required for different types of motion are explained in detail by exploiting the Hamiltonian structure of the problem. The underlying effects of a fixed vortex on the motion of vortices are also explored.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9717008/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9717008/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamical aspects of a restricted three-vortex problem
Point vortex systems that include vortices with constant coordinate functions are largely unexplored, even though they have reasonable physical interpretations in the geophysical context. Here, we investigate the dynamical aspects of the restricted three-vortex problem when one of the point vortices is assumed to be fixed at a location in the plane. The motion of the passive tracer is explored from a rotating frame of reference within which the free vortex with non-zero circulation remains stationary. By using basic dynamical system theory, it is shown that the vortex motion is always bounded, and any configuration of the three vortices must go through at least one collinear state. The present analysis reveals that any non-relative equilibrium solution of the vortex system either has periodic inter-vortex distances or it will asymptotically converge to a relative equilibrium configuration. The initial conditions required for different types of motion are explained in detail by exploiting the Hamiltonian structure of the problem. The underlying effects of a fixed vortex on the motion of vortices are also explored.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.