{"title":"多连通毫米波网络中高效节能资源分配的深度展开","authors":"Pan Chongrui, Yu Guanding","doi":"10.1007/s12243-023-00970-x","DOIUrl":null,"url":null,"abstract":"<div><p>In millimeter-wave (mmWave) communications, multi-connectivity can enhance the communication capacity while at the cost of increased power consumption. In this paper, we investigate a deep-unfolding-based approach for joint user association and power allocation to maximize the energy efficiency of mmWave networks with multi-connectivity. The problem is formulated as a mixed integer nonlinear fractional optimization problem. First, we develop a three-stage iterative algorithm to achieve an upper bound of the original problem. Then, we unfold the iterative algorithm with a convolutional neural network (CNN)-based accelerator and trainable parameters. Moreover, we propose a CNN-aided greedy algorithm to obtain a feasible solution. The simulation results show that the proposed algorithm can achieve good performance and strong robustness but with much reduced computational complexity.</p></div>","PeriodicalId":50761,"journal":{"name":"Annals of Telecommunications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep unfolding for energy-efficient resource allocation in mmWave networks with multi-connectivity\",\"authors\":\"Pan Chongrui, Yu Guanding\",\"doi\":\"10.1007/s12243-023-00970-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In millimeter-wave (mmWave) communications, multi-connectivity can enhance the communication capacity while at the cost of increased power consumption. In this paper, we investigate a deep-unfolding-based approach for joint user association and power allocation to maximize the energy efficiency of mmWave networks with multi-connectivity. The problem is formulated as a mixed integer nonlinear fractional optimization problem. First, we develop a three-stage iterative algorithm to achieve an upper bound of the original problem. Then, we unfold the iterative algorithm with a convolutional neural network (CNN)-based accelerator and trainable parameters. Moreover, we propose a CNN-aided greedy algorithm to obtain a feasible solution. The simulation results show that the proposed algorithm can achieve good performance and strong robustness but with much reduced computational complexity.</p></div>\",\"PeriodicalId\":50761,\"journal\":{\"name\":\"Annals of Telecommunications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Telecommunications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12243-023-00970-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Telecommunications","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s12243-023-00970-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Deep unfolding for energy-efficient resource allocation in mmWave networks with multi-connectivity
In millimeter-wave (mmWave) communications, multi-connectivity can enhance the communication capacity while at the cost of increased power consumption. In this paper, we investigate a deep-unfolding-based approach for joint user association and power allocation to maximize the energy efficiency of mmWave networks with multi-connectivity. The problem is formulated as a mixed integer nonlinear fractional optimization problem. First, we develop a three-stage iterative algorithm to achieve an upper bound of the original problem. Then, we unfold the iterative algorithm with a convolutional neural network (CNN)-based accelerator and trainable parameters. Moreover, we propose a CNN-aided greedy algorithm to obtain a feasible solution. The simulation results show that the proposed algorithm can achieve good performance and strong robustness but with much reduced computational complexity.
期刊介绍:
Annals of Telecommunications is an international journal publishing original peer-reviewed papers in the field of telecommunications. It covers all the essential branches of modern telecommunications, ranging from digital communications to communication networks and the internet, to software, protocols and services, uses and economics. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies in computers, communications, content management towards the emergence of the information and knowledge society. As a consequence, the Journal provides a medium for exchanging research results and technological achievements accomplished by the European and international scientific community from academia and industry.