{"title":"直喷小排量涡轮增压汽油机高负荷点均匀稀薄燃烧的策略和潜力","authors":"Alexander Rurik, Frank Otto, Thomas Koch","doi":"10.1007/s41104-020-00061-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a homogeneous lean combustion concept for gasoline engines with direct injection, small displacement and turbocharging is investigated under high-load conditions. A representative operating point was selected for this purpose. The tests were carried out on a single-cylinder research engine. In particular, the influence of the center of combustion, charge motion and pressure ratio is discussed. It has been discovered that the center of combustion has a large influence on the stability of homogeneous lean combustion at high load points. The present investigations provide a method of how to achieve an early center of combustion in knock-limited load points of homogeneous lean combustion. Early centers of combustion enable a high air–fuel ratio with good, smooth running and low NO<sub><i>x</i></sub> emissions. In addition to the high charge motion, operation with a positive scavenging gradient and valve overlap can be applied to flush the hot internal residual gas out of the combustion chamber, whereby knocking can be reduced. With the high air–fuel ratio, specific fuel consumption can be reduced substantially and high combustion efficiency can be achieved. The results can be leveraged as a basis for future developments in gasoline engines.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"5 3-4","pages":"71 - 77"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41104-020-00061-2","citationCount":"1","resultStr":"{\"title\":\"Strategy and potential of homogeneous lean combustion at high load points for turbocharged gasoline engines with direct injection and small displacement\",\"authors\":\"Alexander Rurik, Frank Otto, Thomas Koch\",\"doi\":\"10.1007/s41104-020-00061-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a homogeneous lean combustion concept for gasoline engines with direct injection, small displacement and turbocharging is investigated under high-load conditions. A representative operating point was selected for this purpose. The tests were carried out on a single-cylinder research engine. In particular, the influence of the center of combustion, charge motion and pressure ratio is discussed. It has been discovered that the center of combustion has a large influence on the stability of homogeneous lean combustion at high load points. The present investigations provide a method of how to achieve an early center of combustion in knock-limited load points of homogeneous lean combustion. Early centers of combustion enable a high air–fuel ratio with good, smooth running and low NO<sub><i>x</i></sub> emissions. In addition to the high charge motion, operation with a positive scavenging gradient and valve overlap can be applied to flush the hot internal residual gas out of the combustion chamber, whereby knocking can be reduced. With the high air–fuel ratio, specific fuel consumption can be reduced substantially and high combustion efficiency can be achieved. The results can be leveraged as a basis for future developments in gasoline engines.</p></div>\",\"PeriodicalId\":100150,\"journal\":{\"name\":\"Automotive and Engine Technology\",\"volume\":\"5 3-4\",\"pages\":\"71 - 77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41104-020-00061-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive and Engine Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41104-020-00061-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-020-00061-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strategy and potential of homogeneous lean combustion at high load points for turbocharged gasoline engines with direct injection and small displacement
In this paper, a homogeneous lean combustion concept for gasoline engines with direct injection, small displacement and turbocharging is investigated under high-load conditions. A representative operating point was selected for this purpose. The tests were carried out on a single-cylinder research engine. In particular, the influence of the center of combustion, charge motion and pressure ratio is discussed. It has been discovered that the center of combustion has a large influence on the stability of homogeneous lean combustion at high load points. The present investigations provide a method of how to achieve an early center of combustion in knock-limited load points of homogeneous lean combustion. Early centers of combustion enable a high air–fuel ratio with good, smooth running and low NOx emissions. In addition to the high charge motion, operation with a positive scavenging gradient and valve overlap can be applied to flush the hot internal residual gas out of the combustion chamber, whereby knocking can be reduced. With the high air–fuel ratio, specific fuel consumption can be reduced substantially and high combustion efficiency can be achieved. The results can be leveraged as a basis for future developments in gasoline engines.