18年试验升温后高寒草甸植物组成和多样性的变化

IF 2.6 3区 生物学 Q2 PLANT SCIENCES Alpine Botany Pub Date : 2021-10-09 DOI:10.1007/s00035-021-00272-9
Juha M. Alatalo, Mohammad Bagher Erfanian, Ulf Molau, Shengbin Chen, Yang Bai, Annika K. Jägerbrand
{"title":"18年试验升温后高寒草甸植物组成和多样性的变化","authors":"Juha M. Alatalo,&nbsp;Mohammad Bagher Erfanian,&nbsp;Ulf Molau,&nbsp;Shengbin Chen,&nbsp;Yang Bai,&nbsp;Annika K. Jägerbrand","doi":"10.1007/s00035-021-00272-9","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming is expected to have large impacts on high alpine and Arctic ecosystems in the future. Here we report effects of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden. Using open-top chambers, we analysed effects of long-term passive experimental warming on a heath and a meadow. We determined the impact on species composition, species diversity (at the level of rare, common and dominant species), and phylogenetic and functional diversity. Long-term warming drove differentiation in species composition in both communities; warmed plots, but not control plots, had distinctly different species composition in 2013 compared with 1995. Beta diversity increased in the meadow, while it decreased in the heath. Long-term warming had significant negative effects on the three orders of phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only phylogenetic diversity of dominant species was significantly affected. Long-term warming caused reductions in forbs in the heath, while evergreen shrubs increased. In the meadow, deciduous and evergreen shrubs showed increased abundance from 2001 to 2013 in warmed plots. Responses in species and phylogenetic diversity to experimental warming varied over both time (medium (7 years) vs long-term (18 years)) and space (between two neighbouring plant communities). The meadow community was more negatively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes in the meadow may be decreased soil moisture caused by long-term warming.</p></div>","PeriodicalId":51238,"journal":{"name":"Alpine Botany","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00035-021-00272-9.pdf","citationCount":"3","resultStr":"{\"title\":\"Changes in plant composition and diversity in an alpine heath and meadow after 18 years of experimental warming\",\"authors\":\"Juha M. Alatalo,&nbsp;Mohammad Bagher Erfanian,&nbsp;Ulf Molau,&nbsp;Shengbin Chen,&nbsp;Yang Bai,&nbsp;Annika K. Jägerbrand\",\"doi\":\"10.1007/s00035-021-00272-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global warming is expected to have large impacts on high alpine and Arctic ecosystems in the future. Here we report effects of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden. Using open-top chambers, we analysed effects of long-term passive experimental warming on a heath and a meadow. We determined the impact on species composition, species diversity (at the level of rare, common and dominant species), and phylogenetic and functional diversity. Long-term warming drove differentiation in species composition in both communities; warmed plots, but not control plots, had distinctly different species composition in 2013 compared with 1995. Beta diversity increased in the meadow, while it decreased in the heath. Long-term warming had significant negative effects on the three orders of phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only phylogenetic diversity of dominant species was significantly affected. Long-term warming caused reductions in forbs in the heath, while evergreen shrubs increased. In the meadow, deciduous and evergreen shrubs showed increased abundance from 2001 to 2013 in warmed plots. Responses in species and phylogenetic diversity to experimental warming varied over both time (medium (7 years) vs long-term (18 years)) and space (between two neighbouring plant communities). The meadow community was more negatively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes in the meadow may be decreased soil moisture caused by long-term warming.</p></div>\",\"PeriodicalId\":51238,\"journal\":{\"name\":\"Alpine Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00035-021-00272-9.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alpine Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00035-021-00272-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alpine Botany","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00035-021-00272-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

全球变暖预计将在未来对高山和北极生态系统产生重大影响。在这里,我们报道了18年的实验性变暖对瑞典亚北极地区两个对比鲜明的高山植物群落的影响。利用开放式温室,我们分析了长期被动实验变暖对荒原和草地的影响。我们确定了对物种组成、物种多样性(稀有、常见和优势物种水平)、系统发育和功能多样性的影响。长期变暖导致了两个群落物种组成的分化;与1995年相比,2013年温暖地块(而非对照地块)的物种组成明显不同。β多样性在草地上增加,而在荒原上减少。长期变暖对草地系统发育的三个层次的Hill多样性产生了显著的负面影响。石南也有类似的趋势,但只有优势种的系统发育多样性受到显著影响。长期变暖导致石南中的杂类植物减少,而常绿灌木增加。从2001年到2013年,在温暖的草地上,落叶和常绿灌木的数量有所增加。物种和系统发育多样性对实验变暖的反应随时间(中期(7年)与长期(18年))和空间(两个相邻植物群落之间)而变化。草地群落在物种和系统发育多样性方面比石南群落受到的负面影响更大。草地变化的一个潜在驱动因素可能是长期变暖导致的土壤湿度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in plant composition and diversity in an alpine heath and meadow after 18 years of experimental warming

Global warming is expected to have large impacts on high alpine and Arctic ecosystems in the future. Here we report effects of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden. Using open-top chambers, we analysed effects of long-term passive experimental warming on a heath and a meadow. We determined the impact on species composition, species diversity (at the level of rare, common and dominant species), and phylogenetic and functional diversity. Long-term warming drove differentiation in species composition in both communities; warmed plots, but not control plots, had distinctly different species composition in 2013 compared with 1995. Beta diversity increased in the meadow, while it decreased in the heath. Long-term warming had significant negative effects on the three orders of phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only phylogenetic diversity of dominant species was significantly affected. Long-term warming caused reductions in forbs in the heath, while evergreen shrubs increased. In the meadow, deciduous and evergreen shrubs showed increased abundance from 2001 to 2013 in warmed plots. Responses in species and phylogenetic diversity to experimental warming varied over both time (medium (7 years) vs long-term (18 years)) and space (between two neighbouring plant communities). The meadow community was more negatively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes in the meadow may be decreased soil moisture caused by long-term warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Alpine Botany
Alpine Botany PLANT SCIENCES-
CiteScore
5.10
自引率
18.50%
发文量
15
审稿时长
>12 weeks
期刊介绍: Alpine Botany is an international journal providing a forum for plant science studies at high elevation with links to fungal and microbial ecology, including vegetation and flora of mountain regions worldwide.
期刊最新文献
Soil seed banks reveal the legacy of shifting plant assemblages in late-lying alpine snowpatch communities Haymaking complemented by moderate disturbances can sustain and restore species-rich alpine to subalpine grasslands Microsite preferences of three conifers in calcareous and siliceous treeline ecotones in the French alps Growth dynamics and climate sensitivities in alpine cushion plants: insights from Silene acaulis in the Swiss Alps Temporal and spatial variation in the direct and indirect effects of climate on reproduction in alpine populations of Ranunculus acris L
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1