{"title":"\\({\\mathcal{L}})}(^2{\\math bb{R}}^2_{h(w)})的规范集","authors":"Sung Guen Kim","doi":"10.1007/s44146-023-00078-7","DOIUrl":null,"url":null,"abstract":"<div><p>An element <span>\\((x_1, \\ldots , x_n)\\in E^n\\)</span> is called a <i>norming point</i> of <span>\\(T\\in {{\\mathcal {L}}}(^n E)\\)</span> if <span>\\(\\Vert x_1\\Vert =\\cdots =\\Vert x_n\\Vert =1\\)</span> and <span>\\(|T(x_1, \\ldots , x_n)|=\\Vert T\\Vert ,\\)</span> where <span>\\({{\\mathcal {L}}}(^n E)\\)</span> denotes the space of all continuous <i>n</i>-linear forms on <i>E</i>. For <span>\\(T\\in {{\\mathcal {L}}}(^n E),\\)</span> we define </p><div><div><span>$$\\begin{aligned} \\text {Norm}(T)=\\{(x_1, \\ldots , x_n)\\in E^n: (x_1, \\ldots , x_n)~\\text{ is } \\text{ a } \\text{ norming } \\text{ point } \\text{ of }~T\\}. \\end{aligned}$$</span></div></div><p>Let <span>\\({\\mathbb {R}}^2_{h(w)}\\)</span> denote the plane with the hexagonal norm with weight <span>\\(0<w<1\\)</span></p><div><div><span>$$\\begin{aligned} \\Vert (x, y)\\Vert _{h(w)}=\\max \\Big \\{|y|, |x|+(1-w)|y|\\Big \\}. \\end{aligned}$$</span></div></div><p>We classify <span>\\(\\text {Norm}(T)\\)</span> for every <span>\\(T\\in {{\\mathcal {L}}}(^2 {\\mathbb {R}}_{h(w)}^2)\\)</span>.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"61 - 79"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00078-7.pdf","citationCount":"0","resultStr":"{\"title\":\"The norming sets of \\\\({{\\\\mathcal {L}}}(^2 {\\\\mathbb {R}}^2_{h(w)})\\\\)\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.1007/s44146-023-00078-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An element <span>\\\\((x_1, \\\\ldots , x_n)\\\\in E^n\\\\)</span> is called a <i>norming point</i> of <span>\\\\(T\\\\in {{\\\\mathcal {L}}}(^n E)\\\\)</span> if <span>\\\\(\\\\Vert x_1\\\\Vert =\\\\cdots =\\\\Vert x_n\\\\Vert =1\\\\)</span> and <span>\\\\(|T(x_1, \\\\ldots , x_n)|=\\\\Vert T\\\\Vert ,\\\\)</span> where <span>\\\\({{\\\\mathcal {L}}}(^n E)\\\\)</span> denotes the space of all continuous <i>n</i>-linear forms on <i>E</i>. For <span>\\\\(T\\\\in {{\\\\mathcal {L}}}(^n E),\\\\)</span> we define </p><div><div><span>$$\\\\begin{aligned} \\\\text {Norm}(T)=\\\\{(x_1, \\\\ldots , x_n)\\\\in E^n: (x_1, \\\\ldots , x_n)~\\\\text{ is } \\\\text{ a } \\\\text{ norming } \\\\text{ point } \\\\text{ of }~T\\\\}. \\\\end{aligned}$$</span></div></div><p>Let <span>\\\\({\\\\mathbb {R}}^2_{h(w)}\\\\)</span> denote the plane with the hexagonal norm with weight <span>\\\\(0<w<1\\\\)</span></p><div><div><span>$$\\\\begin{aligned} \\\\Vert (x, y)\\\\Vert _{h(w)}=\\\\max \\\\Big \\\\{|y|, |x|+(1-w)|y|\\\\Big \\\\}. \\\\end{aligned}$$</span></div></div><p>We classify <span>\\\\(\\\\text {Norm}(T)\\\\)</span> for every <span>\\\\(T\\\\in {{\\\\mathcal {L}}}(^2 {\\\\mathbb {R}}_{h(w)}^2)\\\\)</span>.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 1-2\",\"pages\":\"61 - 79\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-023-00078-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00078-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00078-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The norming sets of \({{\mathcal {L}}}(^2 {\mathbb {R}}^2_{h(w)})\)
An element \((x_1, \ldots , x_n)\in E^n\) is called a norming point of \(T\in {{\mathcal {L}}}(^n E)\) if \(\Vert x_1\Vert =\cdots =\Vert x_n\Vert =1\) and \(|T(x_1, \ldots , x_n)|=\Vert T\Vert ,\) where \({{\mathcal {L}}}(^n E)\) denotes the space of all continuous n-linear forms on E. For \(T\in {{\mathcal {L}}}(^n E),\) we define
$$\begin{aligned} \text {Norm}(T)=\{(x_1, \ldots , x_n)\in E^n: (x_1, \ldots , x_n)~\text{ is } \text{ a } \text{ norming } \text{ point } \text{ of }~T\}. \end{aligned}$$
Let \({\mathbb {R}}^2_{h(w)}\) denote the plane with the hexagonal norm with weight \(0<w<1\)