{"title":"卡西尼双基地雷达实验:泰坦极地的初步结果","authors":"Giancorrado Brighi","doi":"10.1007/s42496-022-00135-4","DOIUrl":null,"url":null,"abstract":"<div><p>In bistatic radar observations, reflected echoes from the surface of a target planet can be analyzed to infer its surface statistics and near-surface constituents. In this work, a preliminary inspection of two X-band bistatic radar observations gathered by the Cassini spacecraft about Titan’s polar regions is presented. Profiles of relative dielectric constant and root-mean-square (rms) surface slope are provided as outputs of the analysis, discussed, and compared with the present knowledge of Titan geomorphology. For the assessment of the rms slope, proportional to the spectral broadening of reflected echoes, a basic fitting procedure was applied to the received spectra using a Gaussian template, to later evaluate the full-width half-maximum of the fitting curve. The dielectric constant was computed from the power ratio between orthogonally circularly polarized components of signal reflections from Titan. Dielectric constant estimates are, on average, consistent with the expected materials covering the dry surfaces of the planet, while slightly low values were found over the seas. The rms slopes are generally low compared to past bistatic observations of other targets. Titan’s north polar seas are revealed to feature an unprecedented smoothness, with 0.01<span>\\(^\\circ\\)</span> of slope as an upper bound. Similar values were inferred for isolated spots in the southern pole, hinting at the possible presence of basins filled with liquid hydrocarbons. The main issues with the analysis are emphasized throughout the document, and some ideas for future work are presented in the conclusions.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"102 1","pages":"59 - 76"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42496-022-00135-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Cassini Bistatic Radar Experiments: Preliminary Results on Titan’s Polar Regions\",\"authors\":\"Giancorrado Brighi\",\"doi\":\"10.1007/s42496-022-00135-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In bistatic radar observations, reflected echoes from the surface of a target planet can be analyzed to infer its surface statistics and near-surface constituents. In this work, a preliminary inspection of two X-band bistatic radar observations gathered by the Cassini spacecraft about Titan’s polar regions is presented. Profiles of relative dielectric constant and root-mean-square (rms) surface slope are provided as outputs of the analysis, discussed, and compared with the present knowledge of Titan geomorphology. For the assessment of the rms slope, proportional to the spectral broadening of reflected echoes, a basic fitting procedure was applied to the received spectra using a Gaussian template, to later evaluate the full-width half-maximum of the fitting curve. The dielectric constant was computed from the power ratio between orthogonally circularly polarized components of signal reflections from Titan. Dielectric constant estimates are, on average, consistent with the expected materials covering the dry surfaces of the planet, while slightly low values were found over the seas. The rms slopes are generally low compared to past bistatic observations of other targets. Titan’s north polar seas are revealed to feature an unprecedented smoothness, with 0.01<span>\\\\(^\\\\circ\\\\)</span> of slope as an upper bound. Similar values were inferred for isolated spots in the southern pole, hinting at the possible presence of basins filled with liquid hydrocarbons. The main issues with the analysis are emphasized throughout the document, and some ideas for future work are presented in the conclusions.</p></div>\",\"PeriodicalId\":100054,\"journal\":{\"name\":\"Aerotecnica Missili & Spazio\",\"volume\":\"102 1\",\"pages\":\"59 - 76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42496-022-00135-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerotecnica Missili & Spazio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42496-022-00135-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-022-00135-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cassini Bistatic Radar Experiments: Preliminary Results on Titan’s Polar Regions
In bistatic radar observations, reflected echoes from the surface of a target planet can be analyzed to infer its surface statistics and near-surface constituents. In this work, a preliminary inspection of two X-band bistatic radar observations gathered by the Cassini spacecraft about Titan’s polar regions is presented. Profiles of relative dielectric constant and root-mean-square (rms) surface slope are provided as outputs of the analysis, discussed, and compared with the present knowledge of Titan geomorphology. For the assessment of the rms slope, proportional to the spectral broadening of reflected echoes, a basic fitting procedure was applied to the received spectra using a Gaussian template, to later evaluate the full-width half-maximum of the fitting curve. The dielectric constant was computed from the power ratio between orthogonally circularly polarized components of signal reflections from Titan. Dielectric constant estimates are, on average, consistent with the expected materials covering the dry surfaces of the planet, while slightly low values were found over the seas. The rms slopes are generally low compared to past bistatic observations of other targets. Titan’s north polar seas are revealed to feature an unprecedented smoothness, with 0.01\(^\circ\) of slope as an upper bound. Similar values were inferred for isolated spots in the southern pole, hinting at the possible presence of basins filled with liquid hydrocarbons. The main issues with the analysis are emphasized throughout the document, and some ideas for future work are presented in the conclusions.