Jean-Marc Kelif, Dinh-Thuy Phan-Huy, Philippe Ratajczak, Orange Innovation/Networks
{"title":"具有散射表面的后向散射通信系统效率","authors":"Jean-Marc Kelif, Dinh-Thuy Phan-Huy, Philippe Ratajczak, Orange Innovation/Networks","doi":"10.1007/s12243-023-00955-w","DOIUrl":null,"url":null,"abstract":"<div><p>In an ambient backscatter communication system, the waves generated by a source are reflected by a tag, in a variable manner in time. Therefore, the tag can transmit a message to a reader, without generating any radio wave and without battery. As a consequence, such a communication system is a promising technology for ultra-low energy wireless communications. In the simplest implementation of such a system, the tag sends a binary message by oscillating between two states and the reader detects the bits by comparing the two distinct received powers. In this paper, for the first time, we propose to analyze the impact of the shape of diffusing flat panel surfaces that diffuse in all directions, on an ambient backscatter communication system. We establish the analytical closed form expression of the power contrast in the presence of flat panels, by considering a rectangular surface and a disk-shaped surface, and we show that diffusing surfaces improve the power contrast. Moreover, our approach allows us to express the contrast to noise ratio, and therefore to establish the BER performance. Furthermore, we show that it makes it possible to improve the energetic performance, thanks to diffusing surfaces. For any configuration characterized by a fixed source, tag and reader, we moreover determine the precise locations of diffusing surfaces, which induce a maximum efficiency of the surfaces, whatever the wavelength. Furthermore, we show that it becomes possible to easily determine an optimal frequency which maximizes the contrast power, thanks to the expression of the contrast power.</p></div>","PeriodicalId":50761,"journal":{"name":"Annals of Telecommunications","volume":"78 9-10","pages":"561 - 576"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backscatter communication system efficiency with diffusing surfaces\",\"authors\":\"Jean-Marc Kelif, Dinh-Thuy Phan-Huy, Philippe Ratajczak, Orange Innovation/Networks\",\"doi\":\"10.1007/s12243-023-00955-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In an ambient backscatter communication system, the waves generated by a source are reflected by a tag, in a variable manner in time. Therefore, the tag can transmit a message to a reader, without generating any radio wave and without battery. As a consequence, such a communication system is a promising technology for ultra-low energy wireless communications. In the simplest implementation of such a system, the tag sends a binary message by oscillating between two states and the reader detects the bits by comparing the two distinct received powers. In this paper, for the first time, we propose to analyze the impact of the shape of diffusing flat panel surfaces that diffuse in all directions, on an ambient backscatter communication system. We establish the analytical closed form expression of the power contrast in the presence of flat panels, by considering a rectangular surface and a disk-shaped surface, and we show that diffusing surfaces improve the power contrast. Moreover, our approach allows us to express the contrast to noise ratio, and therefore to establish the BER performance. Furthermore, we show that it makes it possible to improve the energetic performance, thanks to diffusing surfaces. For any configuration characterized by a fixed source, tag and reader, we moreover determine the precise locations of diffusing surfaces, which induce a maximum efficiency of the surfaces, whatever the wavelength. Furthermore, we show that it becomes possible to easily determine an optimal frequency which maximizes the contrast power, thanks to the expression of the contrast power.</p></div>\",\"PeriodicalId\":50761,\"journal\":{\"name\":\"Annals of Telecommunications\",\"volume\":\"78 9-10\",\"pages\":\"561 - 576\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Telecommunications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12243-023-00955-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Telecommunications","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s12243-023-00955-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Backscatter communication system efficiency with diffusing surfaces
In an ambient backscatter communication system, the waves generated by a source are reflected by a tag, in a variable manner in time. Therefore, the tag can transmit a message to a reader, without generating any radio wave and without battery. As a consequence, such a communication system is a promising technology for ultra-low energy wireless communications. In the simplest implementation of such a system, the tag sends a binary message by oscillating between two states and the reader detects the bits by comparing the two distinct received powers. In this paper, for the first time, we propose to analyze the impact of the shape of diffusing flat panel surfaces that diffuse in all directions, on an ambient backscatter communication system. We establish the analytical closed form expression of the power contrast in the presence of flat panels, by considering a rectangular surface and a disk-shaped surface, and we show that diffusing surfaces improve the power contrast. Moreover, our approach allows us to express the contrast to noise ratio, and therefore to establish the BER performance. Furthermore, we show that it makes it possible to improve the energetic performance, thanks to diffusing surfaces. For any configuration characterized by a fixed source, tag and reader, we moreover determine the precise locations of diffusing surfaces, which induce a maximum efficiency of the surfaces, whatever the wavelength. Furthermore, we show that it becomes possible to easily determine an optimal frequency which maximizes the contrast power, thanks to the expression of the contrast power.
期刊介绍:
Annals of Telecommunications is an international journal publishing original peer-reviewed papers in the field of telecommunications. It covers all the essential branches of modern telecommunications, ranging from digital communications to communication networks and the internet, to software, protocols and services, uses and economics. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies in computers, communications, content management towards the emergence of the information and knowledge society. As a consequence, the Journal provides a medium for exchanging research results and technological achievements accomplished by the European and international scientific community from academia and industry.