带后轮转向的全轮驱动跑车的控制分配

Yannik Peters, Matthias Stadelmayer
{"title":"带后轮转向的全轮驱动跑车的控制分配","authors":"Yannik Peters,&nbsp;Matthias Stadelmayer","doi":"10.1007/s41104-019-00047-9","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing demands for driving comfort and driving dynamics lead to the introduction of a variety of control systems in modern vehicles. So far, these systems are working in peaceful coexistence and do not use potential synergies. This paper presents a modular control allocation, which combines lateral torque distribution at the rear axle, longitudinal torque distribution, and rear wheel steering. The previous investigations of torque vectoring mostly neglected the secondary yaw torque, which is a result of the dependency between lateral and longitudinal forces at the tyres. An increase in longitudinal forces leads to a decrease in lateral forces and, therefore, results in a yaw torque. A comprehensive vehicle and tyre model is used to analyze this secondary effect for different vehicle states and requested yaw torque. The investigation shows that the influence of the secondary yaw torque varies heavily depending on the vehicle state and the requested yaw torque. Especially, for stabilizing torque requests at high lateral acceleration, the secondary effect is significant and should not be neglected. The investigation shows that an optimal distribution for each yaw torque request exists and that results in maximum lateral forces and thereby maximum lateral acceleration. These results are used within the paper’s modular control allocation. A model-based reference generator delivers desirable yaw rates and side slip angles, which are transferred into necessary lateral forces at the wheels by the control allocation unit. This force-based approach enables modular expandability and usability across multiple vehicles. The proposed controller shows that using the available systems in conjunction helps to increase driving performance and the vehicles stability at the same time.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"4 3-4","pages":"111 - 123"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41104-019-00047-9","citationCount":"3","resultStr":"{\"title\":\"Control allocation for all wheel drive sports cars with rear wheel steering\",\"authors\":\"Yannik Peters,&nbsp;Matthias Stadelmayer\",\"doi\":\"10.1007/s41104-019-00047-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing demands for driving comfort and driving dynamics lead to the introduction of a variety of control systems in modern vehicles. So far, these systems are working in peaceful coexistence and do not use potential synergies. This paper presents a modular control allocation, which combines lateral torque distribution at the rear axle, longitudinal torque distribution, and rear wheel steering. The previous investigations of torque vectoring mostly neglected the secondary yaw torque, which is a result of the dependency between lateral and longitudinal forces at the tyres. An increase in longitudinal forces leads to a decrease in lateral forces and, therefore, results in a yaw torque. A comprehensive vehicle and tyre model is used to analyze this secondary effect for different vehicle states and requested yaw torque. The investigation shows that the influence of the secondary yaw torque varies heavily depending on the vehicle state and the requested yaw torque. Especially, for stabilizing torque requests at high lateral acceleration, the secondary effect is significant and should not be neglected. The investigation shows that an optimal distribution for each yaw torque request exists and that results in maximum lateral forces and thereby maximum lateral acceleration. These results are used within the paper’s modular control allocation. A model-based reference generator delivers desirable yaw rates and side slip angles, which are transferred into necessary lateral forces at the wheels by the control allocation unit. This force-based approach enables modular expandability and usability across multiple vehicles. The proposed controller shows that using the available systems in conjunction helps to increase driving performance and the vehicles stability at the same time.</p></div>\",\"PeriodicalId\":100150,\"journal\":{\"name\":\"Automotive and Engine Technology\",\"volume\":\"4 3-4\",\"pages\":\"111 - 123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41104-019-00047-9\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive and Engine Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41104-019-00047-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-019-00047-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对驾驶舒适性和驾驶动态性的日益增长的需求导致在现代车辆中引入了各种控制系统。到目前为止,这些系统是在和平共处中运作的,没有利用潜在的协同作用。本文提出了一种模块化控制分配,它结合了后轴的横向扭矩分配、纵向扭矩分配和后轮转向。先前对扭矩矢量化的研究大多忽略了二次偏航扭矩,这是轮胎横向力和纵向力之间依赖性的结果。纵向力的增加导致横向力的减少,从而导致偏航扭矩。使用综合的车辆和轮胎模型来分析不同车辆状态和要求的横摆力矩的这种二次效应。调查表明,辅助横摆力矩的影响因车辆状态和要求的横摆力矩而异。特别是,对于高横向加速度下的稳定扭矩要求,二次效应是显著的,不应忽视。研究表明,存在每个偏航扭矩请求的最佳分布,从而产生最大横向力,从而产生最高横向加速度。这些结果被用于本文的模块化控制分配中。基于模型的参考发电机提供理想的横摆角速度和侧滑角,这些横摆角和侧滑角通过控制分配单元转换为车轮处的必要横向力。这种基于部队的方法实现了跨多辆车的模块化可扩展性和可用性。所提出的控制器表明,将现有系统结合使用有助于提高驾驶性能和车辆稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control allocation for all wheel drive sports cars with rear wheel steering

The increasing demands for driving comfort and driving dynamics lead to the introduction of a variety of control systems in modern vehicles. So far, these systems are working in peaceful coexistence and do not use potential synergies. This paper presents a modular control allocation, which combines lateral torque distribution at the rear axle, longitudinal torque distribution, and rear wheel steering. The previous investigations of torque vectoring mostly neglected the secondary yaw torque, which is a result of the dependency between lateral and longitudinal forces at the tyres. An increase in longitudinal forces leads to a decrease in lateral forces and, therefore, results in a yaw torque. A comprehensive vehicle and tyre model is used to analyze this secondary effect for different vehicle states and requested yaw torque. The investigation shows that the influence of the secondary yaw torque varies heavily depending on the vehicle state and the requested yaw torque. Especially, for stabilizing torque requests at high lateral acceleration, the secondary effect is significant and should not be neglected. The investigation shows that an optimal distribution for each yaw torque request exists and that results in maximum lateral forces and thereby maximum lateral acceleration. These results are used within the paper’s modular control allocation. A model-based reference generator delivers desirable yaw rates and side slip angles, which are transferred into necessary lateral forces at the wheels by the control allocation unit. This force-based approach enables modular expandability and usability across multiple vehicles. The proposed controller shows that using the available systems in conjunction helps to increase driving performance and the vehicles stability at the same time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an electrochemically approximated simulation model and a hardware substitution cell approach for thermal management battery system tests A detailed comparison of ethanol–diesel direct fuel blending to conventional ethanol–diesel dual-fuel combustion Influence of the air–fuel-ratio and fuel on the reactivity of diesel soot Introducing the double validation metric for radar sensor models Chassis concept of the individually steerable five-link suspension: a novel approach to maximize the road wheel angle to improve vehicle agility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1