电动动力系中汽油发动机的燃料消耗潜力:均质和非均质稀薄燃烧的比较

Alexander Rurik, Frank Otto, Thomas Koch
{"title":"电动动力系中汽油发动机的燃料消耗潜力:均质和非均质稀薄燃烧的比较","authors":"Alexander Rurik,&nbsp;Frank Otto,&nbsp;Thomas Koch","doi":"10.1007/s41104-020-00063-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper evaluates the fuel consumption of homogeneous and heterogeneous lean combustion in the WLTC test cycle. A lean combustion engine is combined with an electrified powertrain and the combustion processes are compared with each other. There is also a distinction with regard to the degree of electrification. First, investigations are carried out with an “engine in the loop” test bench. It turns out that, as expected, the best fuel consumption results can be achieved with heterogeneous lean combustion in combination with homogeneous lean combustion. In addition, it is shown that, in combination with P1 hybridization, low-load heterogeneous lean combustion becomes less important, but continues to contribute to an improvement in fuel consumption. Additionally, P1 hybridization increases the percentage of homogeneous lean combustion by 13%. Thus, the cycle fuel consumption is improved through electrification disproportionately for homogeneous lean combustion by 7.5%, for stoichiometric combustion by 6%. Furthermore, electrification contributes to reducing nitrogen oxide emissions by about 50% in the test cycle to 9 mg/km. The reduction can be achieved by shifting the load points from high loads with higher NOx raw emissions to lower loads with lower NOx raw emissions and by omitting heterogeneous lean combustion. In the second step, the combustion processes for two different engine displacements are compared in calculations. This allows further investigations. It turns out that, with increasing degree of electrification and decreasing engine displacement, heterogeneous lean combustion can no longer contribute to an improvement in fuel consumption and rather an expansion of homogeneous lean combustion at high loads becomes necessary. In general, thanks to the electrification of the powertrain in combination with lean combustion, the cycle fuel consumption can be greatly reduced by up to 33% to 3.76 l/100 km. Electrification does not compete with the advantages of lean combustion, but complements them. The presented results show the potential for improvement in fuel consumption for future developments in gasoline engines in hybridized powertrains.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"5 3-4","pages":"91 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41104-020-00063-0","citationCount":"0","resultStr":"{\"title\":\"Fuel consumption potential of gasoline engines in an electrified powertrain: homogeneous and heterogeneous lean combustion in comparison\",\"authors\":\"Alexander Rurik,&nbsp;Frank Otto,&nbsp;Thomas Koch\",\"doi\":\"10.1007/s41104-020-00063-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper evaluates the fuel consumption of homogeneous and heterogeneous lean combustion in the WLTC test cycle. A lean combustion engine is combined with an electrified powertrain and the combustion processes are compared with each other. There is also a distinction with regard to the degree of electrification. First, investigations are carried out with an “engine in the loop” test bench. It turns out that, as expected, the best fuel consumption results can be achieved with heterogeneous lean combustion in combination with homogeneous lean combustion. In addition, it is shown that, in combination with P1 hybridization, low-load heterogeneous lean combustion becomes less important, but continues to contribute to an improvement in fuel consumption. Additionally, P1 hybridization increases the percentage of homogeneous lean combustion by 13%. Thus, the cycle fuel consumption is improved through electrification disproportionately for homogeneous lean combustion by 7.5%, for stoichiometric combustion by 6%. Furthermore, electrification contributes to reducing nitrogen oxide emissions by about 50% in the test cycle to 9 mg/km. The reduction can be achieved by shifting the load points from high loads with higher NOx raw emissions to lower loads with lower NOx raw emissions and by omitting heterogeneous lean combustion. In the second step, the combustion processes for two different engine displacements are compared in calculations. This allows further investigations. It turns out that, with increasing degree of electrification and decreasing engine displacement, heterogeneous lean combustion can no longer contribute to an improvement in fuel consumption and rather an expansion of homogeneous lean combustion at high loads becomes necessary. In general, thanks to the electrification of the powertrain in combination with lean combustion, the cycle fuel consumption can be greatly reduced by up to 33% to 3.76 l/100 km. Electrification does not compete with the advantages of lean combustion, but complements them. The presented results show the potential for improvement in fuel consumption for future developments in gasoline engines in hybridized powertrains.</p></div>\",\"PeriodicalId\":100150,\"journal\":{\"name\":\"Automotive and Engine Technology\",\"volume\":\"5 3-4\",\"pages\":\"91 - 100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41104-020-00063-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive and Engine Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41104-020-00063-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-020-00063-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文评估了WLTC试验循环中均匀和非均匀稀薄燃烧的燃料消耗。将稀薄燃烧发动机与电动动力系统相结合,并将燃烧过程相互比较。电气化程度也有区别。首先,使用“发动机在环”试验台进行调查。结果表明,正如预期的那样,非均匀稀薄燃烧与均匀稀薄燃烧相结合可以获得最佳的燃料消耗结果。此外,研究表明,与P1杂交相结合,低负荷非均质稀薄燃烧变得不那么重要,但仍有助于改善燃料消耗。此外,P1杂交使均匀稀薄燃烧的百分比增加了13%。因此,通过通电,对于均匀稀薄燃烧,循环燃料消耗提高了7.5%,对于化学计量燃烧,提高了6%。此外,通电有助于在试验循环中将氮氧化物排放量减少约50%,达到9mg/km。可以通过将负载点从具有较高NOx原始排放的高负载转移到具有较低NOx原始排放量的较低负载以及通过省略非均质稀薄燃烧来实现减少。在第二步中,在计算中比较两种不同发动机排量的燃烧过程。这样可以进行进一步的调查。事实证明,随着电气化程度的提高和发动机排量的减少,非均质稀薄燃烧不再有助于燃料消耗的改善,而是有必要在高负载下扩大均质稀薄燃烧。总的来说,得益于动力总成的电动化与稀薄燃烧相结合,循环油耗可以大幅降低33%,达到3.76升/100公里。电动化并不与稀薄燃烧的优势竞争,而是与它们相辅相成。所提出的结果显示了在混合动力系中汽油发动机的未来发展中提高燃料消耗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuel consumption potential of gasoline engines in an electrified powertrain: homogeneous and heterogeneous lean combustion in comparison

This paper evaluates the fuel consumption of homogeneous and heterogeneous lean combustion in the WLTC test cycle. A lean combustion engine is combined with an electrified powertrain and the combustion processes are compared with each other. There is also a distinction with regard to the degree of electrification. First, investigations are carried out with an “engine in the loop” test bench. It turns out that, as expected, the best fuel consumption results can be achieved with heterogeneous lean combustion in combination with homogeneous lean combustion. In addition, it is shown that, in combination with P1 hybridization, low-load heterogeneous lean combustion becomes less important, but continues to contribute to an improvement in fuel consumption. Additionally, P1 hybridization increases the percentage of homogeneous lean combustion by 13%. Thus, the cycle fuel consumption is improved through electrification disproportionately for homogeneous lean combustion by 7.5%, for stoichiometric combustion by 6%. Furthermore, electrification contributes to reducing nitrogen oxide emissions by about 50% in the test cycle to 9 mg/km. The reduction can be achieved by shifting the load points from high loads with higher NOx raw emissions to lower loads with lower NOx raw emissions and by omitting heterogeneous lean combustion. In the second step, the combustion processes for two different engine displacements are compared in calculations. This allows further investigations. It turns out that, with increasing degree of electrification and decreasing engine displacement, heterogeneous lean combustion can no longer contribute to an improvement in fuel consumption and rather an expansion of homogeneous lean combustion at high loads becomes necessary. In general, thanks to the electrification of the powertrain in combination with lean combustion, the cycle fuel consumption can be greatly reduced by up to 33% to 3.76 l/100 km. Electrification does not compete with the advantages of lean combustion, but complements them. The presented results show the potential for improvement in fuel consumption for future developments in gasoline engines in hybridized powertrains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an electrochemically approximated simulation model and a hardware substitution cell approach for thermal management battery system tests A detailed comparison of ethanol–diesel direct fuel blending to conventional ethanol–diesel dual-fuel combustion Influence of the air–fuel-ratio and fuel on the reactivity of diesel soot Introducing the double validation metric for radar sensor models Chassis concept of the individually steerable five-link suspension: a novel approach to maximize the road wheel angle to improve vehicle agility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1