{"title":"生产相关要求的通用模型及其相互依赖性——以汽车底盘为例","authors":"Bastian Leistner, Danail Angelov, Ralph Mayer","doi":"10.1007/s41104-019-00052-y","DOIUrl":null,"url":null,"abstract":"<div><p>In an era of rapidly changing trends and customer requirements, the necessity of agile product development processes has arisen. Currently used processes are not sustainable because they are not able to handle future volatility considering early phase requirements and would lead to late and expensive changes in product design. In the context of the automobile industry, the early phase of the product development has to deal with requirements, designing a modular vehicle architecture, which includes all models of a product family. An empirical research was conducted to generate a thorough list of production-related requirements for the chassis, between interacting departments and roles within an automotive OEM. The resulting generic model showed the interdependencies between the analysed requirements. Additionally, the aim is to measure the maturity level of the individual production-related requirements at specific phases. The first benefit of this model is to show through the interdependencies between existing production requirements, how a change would affect the system. Secondly, it is possible to measure the existing production-related issues through a maturity model, which specifies the level of completion of single components at specific phases, and thus give a value to the product development process.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"4 3-4","pages":"179 - 188"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41104-019-00052-y","citationCount":"0","resultStr":"{\"title\":\"Generic model for production-related requirements and their interdependencies on the example of automotive chassis\",\"authors\":\"Bastian Leistner, Danail Angelov, Ralph Mayer\",\"doi\":\"10.1007/s41104-019-00052-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In an era of rapidly changing trends and customer requirements, the necessity of agile product development processes has arisen. Currently used processes are not sustainable because they are not able to handle future volatility considering early phase requirements and would lead to late and expensive changes in product design. In the context of the automobile industry, the early phase of the product development has to deal with requirements, designing a modular vehicle architecture, which includes all models of a product family. An empirical research was conducted to generate a thorough list of production-related requirements for the chassis, between interacting departments and roles within an automotive OEM. The resulting generic model showed the interdependencies between the analysed requirements. Additionally, the aim is to measure the maturity level of the individual production-related requirements at specific phases. The first benefit of this model is to show through the interdependencies between existing production requirements, how a change would affect the system. Secondly, it is possible to measure the existing production-related issues through a maturity model, which specifies the level of completion of single components at specific phases, and thus give a value to the product development process.</p></div>\",\"PeriodicalId\":100150,\"journal\":{\"name\":\"Automotive and Engine Technology\",\"volume\":\"4 3-4\",\"pages\":\"179 - 188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41104-019-00052-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive and Engine Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41104-019-00052-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-019-00052-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generic model for production-related requirements and their interdependencies on the example of automotive chassis
In an era of rapidly changing trends and customer requirements, the necessity of agile product development processes has arisen. Currently used processes are not sustainable because they are not able to handle future volatility considering early phase requirements and would lead to late and expensive changes in product design. In the context of the automobile industry, the early phase of the product development has to deal with requirements, designing a modular vehicle architecture, which includes all models of a product family. An empirical research was conducted to generate a thorough list of production-related requirements for the chassis, between interacting departments and roles within an automotive OEM. The resulting generic model showed the interdependencies between the analysed requirements. Additionally, the aim is to measure the maturity level of the individual production-related requirements at specific phases. The first benefit of this model is to show through the interdependencies between existing production requirements, how a change would affect the system. Secondly, it is possible to measure the existing production-related issues through a maturity model, which specifies the level of completion of single components at specific phases, and thus give a value to the product development process.