深空立方体卫星的自主车轮卸载策略

Andrea Pizzetti, Antonio Rizza, Francesco Topputo
{"title":"深空立方体卫星的自主车轮卸载策略","authors":"Andrea Pizzetti,&nbsp;Antonio Rizza,&nbsp;Francesco Topputo","doi":"10.1007/s42496-022-00137-2","DOIUrl":null,"url":null,"abstract":"<div><p>Deep-space CubeSats missions require careful trade-offs on design drivers such as mass, volume, and cost, while ensuring autonomous operations. This work elaborates the possibility of off-loading the reaction wheels without the need of carrying a bulky and expensive reaction control system or the field-dependent magnetotorquers. The momentum accumulated along two body axes can be removed by either offsetting the main thruster with a gimbal mechanism or by tilting differentially the solar wings. The dumping on the third axis can be still accomplished by imposing a specific attitude trajectory with the motion of either the gimbal or the arrays drive mechanism. The M-Argo CubeSat is selected as case study to test the techniques along its deep-space trajectory. The strategies decision-making is autonomously carried out by a state machine. The off-loading during the cruising arcs employs the gimballed thruster and takes typically 3 h, granting a mass savings of more than 99% with respect to the usage of a reaction control system. The trajectory is shown to have negligible differences with respect to the nominal one, since the thrust is corrected accordingly. During the coasting arcs, the solar arrays are tilted and several hours are required, depending on the Sun direction and intensity, but the propellant is completely saved. Sensitivity analyses are also carried out on the initial angular momentum components and the center of mass displacement to check the robustness of the algorithms.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"102 1","pages":"3 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42496-022-00137-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Autonomous Wheel Off-Loading Strategies for Deep-Space CubeSats\",\"authors\":\"Andrea Pizzetti,&nbsp;Antonio Rizza,&nbsp;Francesco Topputo\",\"doi\":\"10.1007/s42496-022-00137-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep-space CubeSats missions require careful trade-offs on design drivers such as mass, volume, and cost, while ensuring autonomous operations. This work elaborates the possibility of off-loading the reaction wheels without the need of carrying a bulky and expensive reaction control system or the field-dependent magnetotorquers. The momentum accumulated along two body axes can be removed by either offsetting the main thruster with a gimbal mechanism or by tilting differentially the solar wings. The dumping on the third axis can be still accomplished by imposing a specific attitude trajectory with the motion of either the gimbal or the arrays drive mechanism. The M-Argo CubeSat is selected as case study to test the techniques along its deep-space trajectory. The strategies decision-making is autonomously carried out by a state machine. The off-loading during the cruising arcs employs the gimballed thruster and takes typically 3 h, granting a mass savings of more than 99% with respect to the usage of a reaction control system. The trajectory is shown to have negligible differences with respect to the nominal one, since the thrust is corrected accordingly. During the coasting arcs, the solar arrays are tilted and several hours are required, depending on the Sun direction and intensity, but the propellant is completely saved. Sensitivity analyses are also carried out on the initial angular momentum components and the center of mass displacement to check the robustness of the algorithms.</p></div>\",\"PeriodicalId\":100054,\"journal\":{\"name\":\"Aerotecnica Missili & Spazio\",\"volume\":\"102 1\",\"pages\":\"3 - 15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42496-022-00137-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerotecnica Missili & Spazio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42496-022-00137-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-022-00137-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深空立方体卫星任务需要在质量、体积和成本等设计驱动因素上进行仔细权衡,同时确保自主运行。这项工作阐述了在不需要携带体积庞大且昂贵的反应控制系统或依赖于磁场的磁力矩器的情况下卸载反应轮的可能性。通过用万向节机构偏移主推进器或通过不同地倾斜太阳翼,可以去除沿两个物体轴积累的动量。第三轴上的倾倒仍然可以通过万向节或阵列驱动机构的运动施加特定的姿态轨迹来实现。M-Argo立方体卫星被选为案例研究,以测试其深空轨道上的技术。策略决策是由状态机自主执行的。巡航弧期间的卸载采用万向节推进器,通常需要3小时,相对于反应控制系统的使用,可以节省99%以上的质量。由于推力得到了相应的校正,因此轨迹相对于标称轨迹的差异可以忽略不计。在滑行弧期间,太阳能电池阵列会倾斜,需要几个小时,这取决于太阳的方向和强度,但推进剂完全节省了下来。还对初始角动量分量和质心位移进行了灵敏度分析,以检查算法的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous Wheel Off-Loading Strategies for Deep-Space CubeSats

Deep-space CubeSats missions require careful trade-offs on design drivers such as mass, volume, and cost, while ensuring autonomous operations. This work elaborates the possibility of off-loading the reaction wheels without the need of carrying a bulky and expensive reaction control system or the field-dependent magnetotorquers. The momentum accumulated along two body axes can be removed by either offsetting the main thruster with a gimbal mechanism or by tilting differentially the solar wings. The dumping on the third axis can be still accomplished by imposing a specific attitude trajectory with the motion of either the gimbal or the arrays drive mechanism. The M-Argo CubeSat is selected as case study to test the techniques along its deep-space trajectory. The strategies decision-making is autonomously carried out by a state machine. The off-loading during the cruising arcs employs the gimballed thruster and takes typically 3 h, granting a mass savings of more than 99% with respect to the usage of a reaction control system. The trajectory is shown to have negligible differences with respect to the nominal one, since the thrust is corrected accordingly. During the coasting arcs, the solar arrays are tilted and several hours are required, depending on the Sun direction and intensity, but the propellant is completely saved. Sensitivity analyses are also carried out on the initial angular momentum components and the center of mass displacement to check the robustness of the algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface AIDAA News #24 Considerations for a Spaceport in Venezuela: A Developing Country AIDAA News #23 Some Comments About the Quality and Quantity of Papers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1