低缸数发动机的涡轮增压:热力学考虑

Georg Kellermayr, Eberhard Schutting, Horst Mitterecker
{"title":"低缸数发动机的涡轮增压:热力学考虑","authors":"Georg Kellermayr,&nbsp;Eberhard Schutting,&nbsp;Horst Mitterecker","doi":"10.1007/s41104-019-00048-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the present investigation, the influence of the number of cylinders on the turbocharger and the pumping losses were determined by extensive simulations in combination with experimental investigations. The turbine efficiency is influenced by the different pulsations as a function of the number of cylinders. In addition, another very serious influence of the number of cylinders on the pumping losses has been found. This effect depends strongly on the exhaust volume before turbine, which is why the topic of constant pressure and pulse turbocharging must be considered in detail. It has been found that a smaller number of cylinders (<span>\\(&lt;4\\)</span>) has higher pumping losses in principle, even with the same turbocharger efficiencies. The lowest pumping losses can be achieved with four-cylinder engines. It has also been shown that this issue is completely different for diesel and gasoline engines.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"4 3-4","pages":"153 - 167"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41104-019-00048-8","citationCount":"4","resultStr":"{\"title\":\"Turbocharging of engines with low cylinder numbers: a thermodynamic consideration\",\"authors\":\"Georg Kellermayr,&nbsp;Eberhard Schutting,&nbsp;Horst Mitterecker\",\"doi\":\"10.1007/s41104-019-00048-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present investigation, the influence of the number of cylinders on the turbocharger and the pumping losses were determined by extensive simulations in combination with experimental investigations. The turbine efficiency is influenced by the different pulsations as a function of the number of cylinders. In addition, another very serious influence of the number of cylinders on the pumping losses has been found. This effect depends strongly on the exhaust volume before turbine, which is why the topic of constant pressure and pulse turbocharging must be considered in detail. It has been found that a smaller number of cylinders (<span>\\\\(&lt;4\\\\)</span>) has higher pumping losses in principle, even with the same turbocharger efficiencies. The lowest pumping losses can be achieved with four-cylinder engines. It has also been shown that this issue is completely different for diesel and gasoline engines.</p></div>\",\"PeriodicalId\":100150,\"journal\":{\"name\":\"Automotive and Engine Technology\",\"volume\":\"4 3-4\",\"pages\":\"153 - 167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41104-019-00048-8\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive and Engine Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41104-019-00048-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-019-00048-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本研究中,通过广泛的模拟和实验研究,确定了气缸数量对涡轮增压器和泵送损失的影响。涡轮效率受到作为气缸数量函数的不同脉动的影响。此外,还发现了气缸数量对泵送损失的另一个非常严重的影响。这种影响在很大程度上取决于涡轮前的排气量,这就是为什么必须详细考虑恒压和脉冲涡轮增压的主题。已经发现,原则上,即使具有相同的涡轮增压器效率,数量较少的气缸(\(<;4\))也具有较高的泵送损失。四缸发动机可以实现最低的泵送损失。研究还表明,柴油发动机和汽油发动机的这一问题完全不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turbocharging of engines with low cylinder numbers: a thermodynamic consideration

In the present investigation, the influence of the number of cylinders on the turbocharger and the pumping losses were determined by extensive simulations in combination with experimental investigations. The turbine efficiency is influenced by the different pulsations as a function of the number of cylinders. In addition, another very serious influence of the number of cylinders on the pumping losses has been found. This effect depends strongly on the exhaust volume before turbine, which is why the topic of constant pressure and pulse turbocharging must be considered in detail. It has been found that a smaller number of cylinders (\(<4\)) has higher pumping losses in principle, even with the same turbocharger efficiencies. The lowest pumping losses can be achieved with four-cylinder engines. It has also been shown that this issue is completely different for diesel and gasoline engines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an electrochemically approximated simulation model and a hardware substitution cell approach for thermal management battery system tests A detailed comparison of ethanol–diesel direct fuel blending to conventional ethanol–diesel dual-fuel combustion Influence of the air–fuel-ratio and fuel on the reactivity of diesel soot Introducing the double validation metric for radar sensor models Chassis concept of the individually steerable five-link suspension: a novel approach to maximize the road wheel angle to improve vehicle agility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1