预测HIFU诱导人体组织病变的数值模拟方法:FDTD-LBM

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Physics of Wave Phenomena Pub Date : 2023-03-27 DOI:10.3103/S1541308X2301003X
S.-J. Kim, J.-Y. Hwang, Y.-J. Kim, K.-N. Pae
{"title":"预测HIFU诱导人体组织病变的数值模拟方法:FDTD-LBM","authors":"S.-J. Kim,&nbsp;J.-Y. Hwang,&nbsp;Y.-J. Kim,&nbsp;K.-N. Pae","doi":"10.3103/S1541308X2301003X","DOIUrl":null,"url":null,"abstract":"<p>High-intensity focused ultrasound (HIFU) is a therapy method to treat the tumors in prostate, liver, kidney, pancreas, bone, breast, and uterine fibroids. In the HIFU therapy process, the ultrasound generated in an ultrasonic transducer concentrates on a focal zone. At the zone, the temperature rises locally up to 56°C to provoke the necrosis of human tissue. Therefore, to control the therapy process, it is essential to perceive the main principle of heat generation in human tissue. We study FDTD-LBM (finite difference time domain—lattice Boltzmann method) as a method of predicting the temperature distribution in human tissue during HIFU therapy. The nonlinear Westervelt wave equation is employed for computing the pressure distribution in human tissue during ultrasound propagation, while the Pennes bio-heat transfer equation is used for calculating the temperature distribution in the tissue. Finite difference time domain (FDTD) is applied to solving the nonlinear Westervelt wave equation, and the lattice Boltzmann method can solve the Pennes bio-heat transfer equation. Simulation results have shown that the numerical simulation method proposed has improved the accuracy in analyzing the temperature field in human tissue.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"31 1","pages":"30 - 35"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Simulation Method for Prediction of HIFU Induced Lesions in Human Tissue: FDTD-LBM\",\"authors\":\"S.-J. Kim,&nbsp;J.-Y. Hwang,&nbsp;Y.-J. Kim,&nbsp;K.-N. Pae\",\"doi\":\"10.3103/S1541308X2301003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-intensity focused ultrasound (HIFU) is a therapy method to treat the tumors in prostate, liver, kidney, pancreas, bone, breast, and uterine fibroids. In the HIFU therapy process, the ultrasound generated in an ultrasonic transducer concentrates on a focal zone. At the zone, the temperature rises locally up to 56°C to provoke the necrosis of human tissue. Therefore, to control the therapy process, it is essential to perceive the main principle of heat generation in human tissue. We study FDTD-LBM (finite difference time domain—lattice Boltzmann method) as a method of predicting the temperature distribution in human tissue during HIFU therapy. The nonlinear Westervelt wave equation is employed for computing the pressure distribution in human tissue during ultrasound propagation, while the Pennes bio-heat transfer equation is used for calculating the temperature distribution in the tissue. Finite difference time domain (FDTD) is applied to solving the nonlinear Westervelt wave equation, and the lattice Boltzmann method can solve the Pennes bio-heat transfer equation. Simulation results have shown that the numerical simulation method proposed has improved the accuracy in analyzing the temperature field in human tissue.</p>\",\"PeriodicalId\":732,\"journal\":{\"name\":\"Physics of Wave Phenomena\",\"volume\":\"31 1\",\"pages\":\"30 - 35\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Wave Phenomena\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1541308X2301003X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X2301003X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

高强度聚焦超声(HIFU)是治疗前列腺、肝、肾、胰腺、骨、乳腺、子宫肌瘤等肿瘤的一种治疗方法。在HIFU治疗过程中,超声换能器产生的超声集中在一个焦点区域。在该区域,局部温度上升至56°C,引起人体组织坏死。因此,要控制治疗过程,必须了解人体组织产热的主要原理。我们研究了FDTD-LBM(有限差分时域晶格玻尔兹曼方法)作为预测HIFU治疗期间人体组织温度分布的方法。采用非线性Westervelt波动方程计算超声传播过程中人体组织内的压力分布,采用Pennes生物传热方程计算组织内的温度分布。时域有限差分法(FDTD)可用于求解非线性Westervelt波动方程,晶格玻尔兹曼法可用于求解Pennes生物传热方程。仿真结果表明,所提出的数值模拟方法提高了人体组织温度场分析的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation Method for Prediction of HIFU Induced Lesions in Human Tissue: FDTD-LBM

High-intensity focused ultrasound (HIFU) is a therapy method to treat the tumors in prostate, liver, kidney, pancreas, bone, breast, and uterine fibroids. In the HIFU therapy process, the ultrasound generated in an ultrasonic transducer concentrates on a focal zone. At the zone, the temperature rises locally up to 56°C to provoke the necrosis of human tissue. Therefore, to control the therapy process, it is essential to perceive the main principle of heat generation in human tissue. We study FDTD-LBM (finite difference time domain—lattice Boltzmann method) as a method of predicting the temperature distribution in human tissue during HIFU therapy. The nonlinear Westervelt wave equation is employed for computing the pressure distribution in human tissue during ultrasound propagation, while the Pennes bio-heat transfer equation is used for calculating the temperature distribution in the tissue. Finite difference time domain (FDTD) is applied to solving the nonlinear Westervelt wave equation, and the lattice Boltzmann method can solve the Pennes bio-heat transfer equation. Simulation results have shown that the numerical simulation method proposed has improved the accuracy in analyzing the temperature field in human tissue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Wave Phenomena
Physics of Wave Phenomena PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.50
自引率
21.40%
发文量
43
审稿时长
>12 weeks
期刊介绍: Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.
期刊最新文献
Autocollimation Optical Doppler Velocimeter: Velocity Measurement of Hard-to-Access Objects Frequency Division Multiple Access with High Performance Based on Several Defect Resonators According to the Fibonacci Sequence in 1D Photonic Star Waveguide Structure Nonlinear Effects in Thermoacoustic Pressure Generation Mechanism—Analytic Models Adaptive Method for Holographic Processing of Broadband Hydroacoustic Signals 5-µm Lasing on Tb3+ Ions in a Chalcogenide Fiber Pumped by a 2.8-µm Er:ZBLAN Laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1