基因-环境相互作用与代谢综合征。

K. Adamo, F. Tesson
{"title":"基因-环境相互作用与代谢综合征。","authors":"K. Adamo, F. Tesson","doi":"10.1002/9780470696781.CH8","DOIUrl":null,"url":null,"abstract":"The metabolic syndrome, which has been shown to affect as many as 20% of the general adult US population, is generally described as a cluster of cardiovascular risks factors, most notably obesity, type 2 diabetes or resistance to insulin-stimulated glucose uptake (insulin resistance), dyslipidaemia and hypertension. All these risk factors are under both genetic and environmental control; they are considered individually as complex genetic diseases. Prior to pharmacological interventions for hypertension, diabetes and dyslipidaemia, lifestyle changes, in particular weight loss (or weight maintenance) and physical activity, were prioritized and constituted an effective first-line intervention strategy. Here we want to focus on three clinical components of the metabolic syndrome and the environmental factors that are considered to be the most significant targets for primary interventions: type 2 diabetes and exercise, obesity and diet, and hypertension and salt. Our experimental approach is to go from candidate gene strategy to genome-wide association. The identification of the genetic component of these risk factors is a major challenge, and it is hoped that this would help unravel mechanistic pathways that can ultimately serve as new targets for therapeutic intervention.","PeriodicalId":19323,"journal":{"name":"Novartis Foundation Symposium","volume":"25 9","pages":"103-19; discussion 119-27"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Gene-environment interaction and the metabolic syndrome.\",\"authors\":\"K. Adamo, F. Tesson\",\"doi\":\"10.1002/9780470696781.CH8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The metabolic syndrome, which has been shown to affect as many as 20% of the general adult US population, is generally described as a cluster of cardiovascular risks factors, most notably obesity, type 2 diabetes or resistance to insulin-stimulated glucose uptake (insulin resistance), dyslipidaemia and hypertension. All these risk factors are under both genetic and environmental control; they are considered individually as complex genetic diseases. Prior to pharmacological interventions for hypertension, diabetes and dyslipidaemia, lifestyle changes, in particular weight loss (or weight maintenance) and physical activity, were prioritized and constituted an effective first-line intervention strategy. Here we want to focus on three clinical components of the metabolic syndrome and the environmental factors that are considered to be the most significant targets for primary interventions: type 2 diabetes and exercise, obesity and diet, and hypertension and salt. Our experimental approach is to go from candidate gene strategy to genome-wide association. The identification of the genetic component of these risk factors is a major challenge, and it is hoped that this would help unravel mechanistic pathways that can ultimately serve as new targets for therapeutic intervention.\",\"PeriodicalId\":19323,\"journal\":{\"name\":\"Novartis Foundation Symposium\",\"volume\":\"25 9\",\"pages\":\"103-19; discussion 119-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novartis Foundation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9780470696781.CH8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novartis Foundation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470696781.CH8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

代谢综合征已被证明影响多达20%的美国普通成年人,通常被描述为一组心血管危险因素,最明显的是肥胖、2型糖尿病或胰岛素刺激葡萄糖摄取抵抗(胰岛素抵抗)、血脂异常和高血压。所有这些风险因素都受到遗传和环境的双重控制;它们被单独视为复杂的遗传疾病。在对高血压、糖尿病和血脂异常进行药物干预之前,生活方式的改变,特别是减肥(或维持体重)和体育活动,被优先考虑并构成了有效的一线干预策略。在这里,我们想把重点放在代谢综合征的三个临床组成部分和环境因素上,这些因素被认为是初级干预的最重要目标:2型糖尿病和运动,肥胖和饮食,高血压和盐。我们的实验方法是从候选基因策略到全基因组关联。鉴定这些危险因素的遗传成分是一项重大挑战,希望这将有助于揭示机制途径,最终作为治疗干预的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene-environment interaction and the metabolic syndrome.
The metabolic syndrome, which has been shown to affect as many as 20% of the general adult US population, is generally described as a cluster of cardiovascular risks factors, most notably obesity, type 2 diabetes or resistance to insulin-stimulated glucose uptake (insulin resistance), dyslipidaemia and hypertension. All these risk factors are under both genetic and environmental control; they are considered individually as complex genetic diseases. Prior to pharmacological interventions for hypertension, diabetes and dyslipidaemia, lifestyle changes, in particular weight loss (or weight maintenance) and physical activity, were prioritized and constituted an effective first-line intervention strategy. Here we want to focus on three clinical components of the metabolic syndrome and the environmental factors that are considered to be the most significant targets for primary interventions: type 2 diabetes and exercise, obesity and diet, and hypertension and salt. Our experimental approach is to go from candidate gene strategy to genome-wide association. The identification of the genetic component of these risk factors is a major challenge, and it is hoped that this would help unravel mechanistic pathways that can ultimately serve as new targets for therapeutic intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Cardiovascular disease. Normal and neoplastic stem cells. Outer mitochondrial membrane protein degradation by the proteasome. New insights into the role of pendrin (SLC26A4) in inner ear fluid homeostasis. Interaction of prestin (SLC26A5) with monovalent intracellular anions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1