{"title":"生物炭负载零价铁(ZVI-BC)的结构特性、结构-应用关系及环境应用研究进展","authors":"Fengmin Li, Xiao Wang, Chunhua Xu","doi":"10.1007/s40726-023-00260-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>The biochar-supported zero valent iron (ZVI-BC) can effectively prevent oxidation and agglomeration of ZVI, and improve the utilization rate of ZVI. Recent reviews of ZVI-BC mainly focus on the preparation methods, characterization techniques, and reaction mechanism with pollutants. Since the structural characteristics of biochar have a great impact on Fe<sup>0</sup> loading, a comprehensive review of the structural characteristics of biochar is needed to explain its influence on ZVI formation during preparation. And in application of ZVI-BC, the environmental effects on organisms need to be considered. This review of recent research results provides a perspective for understanding the structural characteristics, preparation factors, and ecotoxicity of ZVI-BC.</p><h3>Recent Findings</h3><p>The adsorption capacity of ZVI-BC prepared by conventional methods still needs to be improved. The surface-area-normalized reaction rate constant (<i>k</i><sub><i>SA</i></sub>) of ZVI-BC can be increased to about 180 times by surface modification, adding a stabilizer, element doping, and other modification methods. Recent research on ecotoxicity has shown mostly positive effects of ZVI-BC on microorganisms, animals, and plants during environmental remediation.</p><h3>Summary</h3><p>This work reviews the effect of biochar as a support matrix on Fe<sup>0</sup> production. The pollutant removal performance is summarized considering the elemental composition, phase components, and surface chemical properties. Also, we discuss the effect of ZVI-BC preparation on contaminant removal and propose methods to optimize the performance of ZVI-BC. The <i>k</i><sub><i>SA</i></sub> was used to conduct a meta-analysis of kinetic data to illustrate the properties of ZVI-BC. In addition, we evaluate the ecotoxicity of using ZVI-BC in environmental remediation.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"9 2","pages":"292 - 311"},"PeriodicalIF":6.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research Progress on Structural Characteristics, Structure-Application Relationships, and Environmental Application of Biochar-Supported Zero Valent Iron (ZVI-BC)\",\"authors\":\"Fengmin Li, Xiao Wang, Chunhua Xu\",\"doi\":\"10.1007/s40726-023-00260-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of Review</h3><p>The biochar-supported zero valent iron (ZVI-BC) can effectively prevent oxidation and agglomeration of ZVI, and improve the utilization rate of ZVI. Recent reviews of ZVI-BC mainly focus on the preparation methods, characterization techniques, and reaction mechanism with pollutants. Since the structural characteristics of biochar have a great impact on Fe<sup>0</sup> loading, a comprehensive review of the structural characteristics of biochar is needed to explain its influence on ZVI formation during preparation. And in application of ZVI-BC, the environmental effects on organisms need to be considered. This review of recent research results provides a perspective for understanding the structural characteristics, preparation factors, and ecotoxicity of ZVI-BC.</p><h3>Recent Findings</h3><p>The adsorption capacity of ZVI-BC prepared by conventional methods still needs to be improved. The surface-area-normalized reaction rate constant (<i>k</i><sub><i>SA</i></sub>) of ZVI-BC can be increased to about 180 times by surface modification, adding a stabilizer, element doping, and other modification methods. Recent research on ecotoxicity has shown mostly positive effects of ZVI-BC on microorganisms, animals, and plants during environmental remediation.</p><h3>Summary</h3><p>This work reviews the effect of biochar as a support matrix on Fe<sup>0</sup> production. The pollutant removal performance is summarized considering the elemental composition, phase components, and surface chemical properties. Also, we discuss the effect of ZVI-BC preparation on contaminant removal and propose methods to optimize the performance of ZVI-BC. The <i>k</i><sub><i>SA</i></sub> was used to conduct a meta-analysis of kinetic data to illustrate the properties of ZVI-BC. In addition, we evaluate the ecotoxicity of using ZVI-BC in environmental remediation.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"9 2\",\"pages\":\"292 - 311\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-023-00260-z\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-023-00260-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Research Progress on Structural Characteristics, Structure-Application Relationships, and Environmental Application of Biochar-Supported Zero Valent Iron (ZVI-BC)
Purpose of Review
The biochar-supported zero valent iron (ZVI-BC) can effectively prevent oxidation and agglomeration of ZVI, and improve the utilization rate of ZVI. Recent reviews of ZVI-BC mainly focus on the preparation methods, characterization techniques, and reaction mechanism with pollutants. Since the structural characteristics of biochar have a great impact on Fe0 loading, a comprehensive review of the structural characteristics of biochar is needed to explain its influence on ZVI formation during preparation. And in application of ZVI-BC, the environmental effects on organisms need to be considered. This review of recent research results provides a perspective for understanding the structural characteristics, preparation factors, and ecotoxicity of ZVI-BC.
Recent Findings
The adsorption capacity of ZVI-BC prepared by conventional methods still needs to be improved. The surface-area-normalized reaction rate constant (kSA) of ZVI-BC can be increased to about 180 times by surface modification, adding a stabilizer, element doping, and other modification methods. Recent research on ecotoxicity has shown mostly positive effects of ZVI-BC on microorganisms, animals, and plants during environmental remediation.
Summary
This work reviews the effect of biochar as a support matrix on Fe0 production. The pollutant removal performance is summarized considering the elemental composition, phase components, and surface chemical properties. Also, we discuss the effect of ZVI-BC preparation on contaminant removal and propose methods to optimize the performance of ZVI-BC. The kSA was used to conduct a meta-analysis of kinetic data to illustrate the properties of ZVI-BC. In addition, we evaluate the ecotoxicity of using ZVI-BC in environmental remediation.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.