钙信号的多功能性和复杂性。

M. Berridge
{"title":"钙信号的多功能性和复杂性。","authors":"M. Berridge","doi":"10.1002/0470846674.CH6","DOIUrl":null,"url":null,"abstract":"Ca2+ is a universal second messenger used to regulate a wide range of cellular processes such as fertilization, proliferation, contraction, secretion, learning and memory. Cells derive signal Ca2+ from both internal and external sources. The Ca2+ flowing through these channels constitute the elementary events of Ca2+ signalling. Ca2+ can act within milliseconds in highly localized regions or it can act much more slowly as a global wave that spreads the signal throughout the cell. Various pumps and exchangers are responsible for returning the elevated levels of Ca2+ back to the resting state. The mitochondrion also plays a critical role in that it helps the recovery process by taking Ca2+ up from the cytoplasm. Alterations in the ebb and flow of Ca2+ through the mitochondria can lead to cell death. A good example of the complexity of Ca2+ signalling is its role in regulating cell proliferation, such as the activation of lymphocytes. The Ca2+ signal needs to be present for over two hours and this prolonged period of signalling depends upon the entry of external Ca2+ through a process of capacitative Ca2+ entry. The Ca2+ signal stimulates gene transcription and thus initiates the cell cycle processes that culminate in cell division.","PeriodicalId":19323,"journal":{"name":"Novartis Foundation Symposium","volume":"81 11","pages":"52-64; discussion 64-7, 150-9"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/0470846674.CH6","citationCount":"102","resultStr":"{\"title\":\"The versatility and complexity of calcium signalling.\",\"authors\":\"M. Berridge\",\"doi\":\"10.1002/0470846674.CH6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ca2+ is a universal second messenger used to regulate a wide range of cellular processes such as fertilization, proliferation, contraction, secretion, learning and memory. Cells derive signal Ca2+ from both internal and external sources. The Ca2+ flowing through these channels constitute the elementary events of Ca2+ signalling. Ca2+ can act within milliseconds in highly localized regions or it can act much more slowly as a global wave that spreads the signal throughout the cell. Various pumps and exchangers are responsible for returning the elevated levels of Ca2+ back to the resting state. The mitochondrion also plays a critical role in that it helps the recovery process by taking Ca2+ up from the cytoplasm. Alterations in the ebb and flow of Ca2+ through the mitochondria can lead to cell death. A good example of the complexity of Ca2+ signalling is its role in regulating cell proliferation, such as the activation of lymphocytes. The Ca2+ signal needs to be present for over two hours and this prolonged period of signalling depends upon the entry of external Ca2+ through a process of capacitative Ca2+ entry. The Ca2+ signal stimulates gene transcription and thus initiates the cell cycle processes that culminate in cell division.\",\"PeriodicalId\":19323,\"journal\":{\"name\":\"Novartis Foundation Symposium\",\"volume\":\"81 11\",\"pages\":\"52-64; discussion 64-7, 150-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/0470846674.CH6\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novartis Foundation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/0470846674.CH6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novartis Foundation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/0470846674.CH6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

摘要

Ca2+是一种通用的第二信使,用于调节广泛的细胞过程,如受精、增殖、收缩、分泌、学习和记忆。细胞从内部和外部来源获得信号Ca2+。Ca2+通过这些通道流动构成Ca2+信号传导的基本事件。Ca2+可以在几毫秒内在高度局部区域起作用,也可以作为一种更慢的全球波在整个细胞中传播信号。各种泵和交换器负责将升高的Ca2+水平返回到静息状态。线粒体也起着至关重要的作用,它通过从细胞质中吸收Ca2+来帮助恢复过程。线粒体中Ca2+的涨落变化可导致细胞死亡。Ca2+信号复杂性的一个很好的例子是它在调节细胞增殖中的作用,如淋巴细胞的激活。Ca2+信号需要存在超过两个小时,这种延长的信号周期取决于外部Ca2+通过容性Ca2+进入过程的进入。Ca2+信号刺激基因转录,从而启动细胞周期过程,最终导致细胞分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The versatility and complexity of calcium signalling.
Ca2+ is a universal second messenger used to regulate a wide range of cellular processes such as fertilization, proliferation, contraction, secretion, learning and memory. Cells derive signal Ca2+ from both internal and external sources. The Ca2+ flowing through these channels constitute the elementary events of Ca2+ signalling. Ca2+ can act within milliseconds in highly localized regions or it can act much more slowly as a global wave that spreads the signal throughout the cell. Various pumps and exchangers are responsible for returning the elevated levels of Ca2+ back to the resting state. The mitochondrion also plays a critical role in that it helps the recovery process by taking Ca2+ up from the cytoplasm. Alterations in the ebb and flow of Ca2+ through the mitochondria can lead to cell death. A good example of the complexity of Ca2+ signalling is its role in regulating cell proliferation, such as the activation of lymphocytes. The Ca2+ signal needs to be present for over two hours and this prolonged period of signalling depends upon the entry of external Ca2+ through a process of capacitative Ca2+ entry. The Ca2+ signal stimulates gene transcription and thus initiates the cell cycle processes that culminate in cell division.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Cardiovascular disease. Normal and neoplastic stem cells. Outer mitochondrial membrane protein degradation by the proteasome. New insights into the role of pendrin (SLC26A4) in inner ear fluid homeostasis. Interaction of prestin (SLC26A5) with monovalent intracellular anions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1