cgpCaVEManWrapper:简单执行CaVEMan以检测NGS数据中的体细胞单核苷酸变异

Q1 Biochemistry, Genetics and Molecular Biology Current protocols in bioinformatics Pub Date : 2016-12-08 DOI:10.1002/cpbi.20
David Jones, Keiran M. Raine, Helen Davies, Patrick S. Tarpey, Adam P. Butler, Jon W. Teague, Serena Nik-Zainal, Peter J. Campbell
{"title":"cgpCaVEManWrapper:简单执行CaVEMan以检测NGS数据中的体细胞单核苷酸变异","authors":"David Jones,&nbsp;Keiran M. Raine,&nbsp;Helen Davies,&nbsp;Patrick S. Tarpey,&nbsp;Adam P. Butler,&nbsp;Jon W. Teague,&nbsp;Serena Nik-Zainal,&nbsp;Peter J. Campbell","doi":"10.1002/cpbi.20","DOIUrl":null,"url":null,"abstract":"<p>CaVEMan is an expectation maximization–based somatic substitution-detection algorithm that is written in C. The algorithm analyzes sequence data from a test sample, such as a tumor relative to a reference normal sample from the same patient and the reference genome. It performs a comparative analysis of the tumor and normal sample to derive a probabilistic estimate for putative somatic substitutions. When combined with a set of validated post-hoc filters, CaVEMan generates a set of somatic substitution calls with high recall and positive predictive value. Here we provide instructions for using a wrapper script called cgpCaVEManWrapper, which runs the CaVEMan algorithm and additional downstream post-hoc filters. We describe both a simple one-shot run of cgpCaVEManWrapper and a more in-depth implementation suited to large-scale compute farms. © 2016 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpbi.20","citationCount":"159","resultStr":"{\"title\":\"cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect Somatic Single Nucleotide Variants in NGS Data\",\"authors\":\"David Jones,&nbsp;Keiran M. Raine,&nbsp;Helen Davies,&nbsp;Patrick S. Tarpey,&nbsp;Adam P. Butler,&nbsp;Jon W. Teague,&nbsp;Serena Nik-Zainal,&nbsp;Peter J. Campbell\",\"doi\":\"10.1002/cpbi.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>CaVEMan is an expectation maximization–based somatic substitution-detection algorithm that is written in C. The algorithm analyzes sequence data from a test sample, such as a tumor relative to a reference normal sample from the same patient and the reference genome. It performs a comparative analysis of the tumor and normal sample to derive a probabilistic estimate for putative somatic substitutions. When combined with a set of validated post-hoc filters, CaVEMan generates a set of somatic substitution calls with high recall and positive predictive value. Here we provide instructions for using a wrapper script called cgpCaVEManWrapper, which runs the CaVEMan algorithm and additional downstream post-hoc filters. We describe both a simple one-shot run of cgpCaVEManWrapper and a more in-depth implementation suited to large-scale compute farms. © 2016 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10958,\"journal\":{\"name\":\"Current protocols in bioinformatics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpbi.20\",\"citationCount\":\"159\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 159

摘要

CaVEMan是一种基于期望最大化的体细胞替代检测算法,用c语言编写。该算法分析来自测试样本的序列数据,例如来自同一患者和参考基因组的相对于参考正常样本的肿瘤。它执行肿瘤和正常样本的比较分析,以得出假定的体细胞替代的概率估计。当与一组经过验证的事后过滤器相结合时,CaVEMan生成了一组具有高召回率和正预测值的体细胞替换呼叫。在这里,我们提供了使用名为cgpCaVEManWrapper的包装器脚本的说明,该脚本运行CaVEMan算法和其他下游事后过滤器。我们描述了cgpCaVEManWrapper的一个简单的一次性运行,以及适合大规模计算场的更深入的实现。©2016 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect Somatic Single Nucleotide Variants in NGS Data

CaVEMan is an expectation maximization–based somatic substitution-detection algorithm that is written in C. The algorithm analyzes sequence data from a test sample, such as a tumor relative to a reference normal sample from the same patient and the reference genome. It performs a comparative analysis of the tumor and normal sample to derive a probabilistic estimate for putative somatic substitutions. When combined with a set of validated post-hoc filters, CaVEMan generates a set of somatic substitution calls with high recall and positive predictive value. Here we provide instructions for using a wrapper script called cgpCaVEManWrapper, which runs the CaVEMan algorithm and additional downstream post-hoc filters. We describe both a simple one-shot run of cgpCaVEManWrapper and a more in-depth implementation suited to large-scale compute farms. © 2016 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in bioinformatics
Current protocols in bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With Current Protocols in Bioinformatics, it"s easier than ever for the life scientist to become "fluent" in bioinformatics and master the exciting new frontiers opened up by DNA sequencing. Updated every three months in all formats, CPBI is constantly evolving to keep pace with the very latest discoveries and developments.
期刊最新文献
Issue Information Protein Sequence Analysis Using the MPI Bioinformatics Toolkit Exploring Manually Curated Annotations of Intrinsically Disordered Proteins with DisProt Network Building with the Cytoscape BioGateway App Explained in Five Use Cases Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1