不同类型负载金属催化剂存在下糠醛的水相加氢反应。回顾

IF 1.1 4区 化学 Q4 CHEMISTRY, PHYSICAL Doklady Physical Chemistry Pub Date : 2023-06-28 DOI:10.1134/S0012501623600109
R. M. Mironenko, O. B. Belskaya,  V. A. Likholobov
{"title":"不同类型负载金属催化剂存在下糠醛的水相加氢反应。回顾","authors":"R. M. Mironenko,&nbsp;O. B. Belskaya,&nbsp; V. A. Likholobov","doi":"10.1134/S0012501623600109","DOIUrl":null,"url":null,"abstract":"<p>Hydrogenation of furfural in the presence of heterogeneous catalysts has recently attracted increased interest as a method for the synthesis of oxygen-containing compounds of various classes based on renewable raw materials. The composition of the catalyst and the conditions of its preparation essentially determine which of the routes of reductive conversions during the hydrogenation of furfural will be predominant. The present review summarizes and examines methods for controlling the physicochemical and functional properties of Pd-, Ni-, Co-, and Cu-containing catalytic compositions, as the most common and practically significant in the hydrogenation of furfural. The influence of the nature of the support, the composition of the active metal precursor, and the conditions for the formation of metal nanoparticles on the activity and selectivity of supported catalysts in the reductive conversions of furfural under aqueous-phase hydrogenation conditions has been demonstrated by numerous examples. Promising directions of research on the development of methods for the synthesis of efficient catalysts with controlled functional properties in the hydrogenation of furfural are considered. The bibliography includes 127 references.</p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":"509 1","pages":"33 - 50"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous-Phase Hydrogenation of Furfural in the Presence of Supported Metal Catalysts of Different Types. A Review\",\"authors\":\"R. M. Mironenko,&nbsp;O. B. Belskaya,&nbsp; V. A. Likholobov\",\"doi\":\"10.1134/S0012501623600109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogenation of furfural in the presence of heterogeneous catalysts has recently attracted increased interest as a method for the synthesis of oxygen-containing compounds of various classes based on renewable raw materials. The composition of the catalyst and the conditions of its preparation essentially determine which of the routes of reductive conversions during the hydrogenation of furfural will be predominant. The present review summarizes and examines methods for controlling the physicochemical and functional properties of Pd-, Ni-, Co-, and Cu-containing catalytic compositions, as the most common and practically significant in the hydrogenation of furfural. The influence of the nature of the support, the composition of the active metal precursor, and the conditions for the formation of metal nanoparticles on the activity and selectivity of supported catalysts in the reductive conversions of furfural under aqueous-phase hydrogenation conditions has been demonstrated by numerous examples. Promising directions of research on the development of methods for the synthesis of efficient catalysts with controlled functional properties in the hydrogenation of furfural are considered. The bibliography includes 127 references.</p>\",\"PeriodicalId\":532,\"journal\":{\"name\":\"Doklady Physical Chemistry\",\"volume\":\"509 1\",\"pages\":\"33 - 50\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Physical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0012501623600109\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0012501623600109","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

异相催化剂下糠醛加氢作为一种基于可再生原料合成各类含氧化合物的方法,近年来引起了人们越来越多的兴趣。催化剂的组成及其制备条件本质上决定了糠醛加氢过程中哪一种还原转化途径将占主导地位。本文综述了糠醛加氢反应中最常见和最具实际意义的Pd-、Ni-、Co-和cu -含催化组合物的物理化学和功能特性控制方法。在水相加氢条件下,载体的性质、活性金属前驱体的组成和金属纳米颗粒的形成条件对载体催化剂在糠醛还原转化中的活性和选择性的影响已经通过许多实例得到了证明。指出了糠醛加氢反应中功能性能可控的高效催化剂的合成方法的发展方向。参考书目包括127篇参考文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aqueous-Phase Hydrogenation of Furfural in the Presence of Supported Metal Catalysts of Different Types. A Review

Hydrogenation of furfural in the presence of heterogeneous catalysts has recently attracted increased interest as a method for the synthesis of oxygen-containing compounds of various classes based on renewable raw materials. The composition of the catalyst and the conditions of its preparation essentially determine which of the routes of reductive conversions during the hydrogenation of furfural will be predominant. The present review summarizes and examines methods for controlling the physicochemical and functional properties of Pd-, Ni-, Co-, and Cu-containing catalytic compositions, as the most common and practically significant in the hydrogenation of furfural. The influence of the nature of the support, the composition of the active metal precursor, and the conditions for the formation of metal nanoparticles on the activity and selectivity of supported catalysts in the reductive conversions of furfural under aqueous-phase hydrogenation conditions has been demonstrated by numerous examples. Promising directions of research on the development of methods for the synthesis of efficient catalysts with controlled functional properties in the hydrogenation of furfural are considered. The bibliography includes 127 references.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Physical Chemistry
Doklady Physical Chemistry 化学-物理化学
CiteScore
1.50
自引率
0.00%
发文量
9
审稿时长
6-12 weeks
期刊介绍: Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.
期刊最新文献
Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential Effect of CTAB Micellar Medium on Cu(II) Catalyzed L-Leucine Oxidation by Hexacyanoferrate(III) Effect of the Solvent Nature on the Biological Activity of Gold-Containing Systems Quantization of Electrical Conductance in Layered Zr/ZrO2/Au Memristive Structures 3-Amino-4-azido-1,2,5-oxadiazole: Synthesis, Structural Characterization, and Physicochemical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1