microRNA-150通过靶向FOXO4促进宫颈癌细胞的生长和存活

IF 2.946 Q3 Biochemistry, Genetics and Molecular Biology BMC Molecular Biology Pub Date : 2015-12-29 DOI:10.1186/s12867-015-0052-6
Jun Li, Lina Hu, Chao Tian, Feng Lu, Jia Wu, Li Liu
{"title":"microRNA-150通过靶向FOXO4促进宫颈癌细胞的生长和存活","authors":"Jun Li,&nbsp;Lina Hu,&nbsp;Chao Tian,&nbsp;Feng Lu,&nbsp;Jia Wu,&nbsp;Li Liu","doi":"10.1186/s12867-015-0052-6","DOIUrl":null,"url":null,"abstract":"<p>Dysregulation of microRNA-150 (miR-150) is commonly observed in solid tumor and has been reported to be involved in multiple important biological processes, such as cell proliferation, apoptosis, and metastasis. Elevated miR-150 level was also detected in cervical carcinoma, whereas its function in cancer progression has not been studied yet.</p><p>The expression of miRNA-150 in cervical carcinoma was compared with normal cervical tissue and using qRT-PCR. The effects of miR-150 on cell cycle and apoptosis, as well as the expression of cycle- and apoptosis-related genes, were determined using flow cytometry, TUNEL assay, qRT-PCR, and Western blot, respectively. The direct target of miR-150 was confirmed using 3′ untranslated region (UTR) luciferase reporter assay.</p><p>miR-150 promotes cervical cancer cell survival and growth, while the inhibition of miR-150 suppresses these actions. miR-150 also induced the cell cycle progression from G1/G0 to S phase, resulting in an enhancement of growth. Several cell cycle- and apoptosis-related genes, CyclinD1, p27, BIM, and FASL were modulated by miR-150. Moreover, miR-150 directly reduced the expression of FOXO4, which regulates the expression of CyclinD1, p27, BIM, and FASL, by targeting its 3′ UTR.</p><p>Taken together, our data demonstrated that elevated miR-150 targets FOXO4 expression and therefore regulates multiple genes expression, resulting in cervical cancer cell growth and survival.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"16 1","pages":""},"PeriodicalIF":2.9460,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-015-0052-6","citationCount":"68","resultStr":"{\"title\":\"microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4\",\"authors\":\"Jun Li,&nbsp;Lina Hu,&nbsp;Chao Tian,&nbsp;Feng Lu,&nbsp;Jia Wu,&nbsp;Li Liu\",\"doi\":\"10.1186/s12867-015-0052-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dysregulation of microRNA-150 (miR-150) is commonly observed in solid tumor and has been reported to be involved in multiple important biological processes, such as cell proliferation, apoptosis, and metastasis. Elevated miR-150 level was also detected in cervical carcinoma, whereas its function in cancer progression has not been studied yet.</p><p>The expression of miRNA-150 in cervical carcinoma was compared with normal cervical tissue and using qRT-PCR. The effects of miR-150 on cell cycle and apoptosis, as well as the expression of cycle- and apoptosis-related genes, were determined using flow cytometry, TUNEL assay, qRT-PCR, and Western blot, respectively. The direct target of miR-150 was confirmed using 3′ untranslated region (UTR) luciferase reporter assay.</p><p>miR-150 promotes cervical cancer cell survival and growth, while the inhibition of miR-150 suppresses these actions. miR-150 also induced the cell cycle progression from G1/G0 to S phase, resulting in an enhancement of growth. Several cell cycle- and apoptosis-related genes, CyclinD1, p27, BIM, and FASL were modulated by miR-150. Moreover, miR-150 directly reduced the expression of FOXO4, which regulates the expression of CyclinD1, p27, BIM, and FASL, by targeting its 3′ UTR.</p><p>Taken together, our data demonstrated that elevated miR-150 targets FOXO4 expression and therefore regulates multiple genes expression, resulting in cervical cancer cell growth and survival.</p>\",\"PeriodicalId\":497,\"journal\":{\"name\":\"BMC Molecular Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9460,\"publicationDate\":\"2015-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12867-015-0052-6\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12867-015-0052-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s12867-015-0052-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 68

摘要

microRNA-150 (miR-150)的失调在实体肿瘤中很常见,并被报道参与了多个重要的生物学过程,如细胞增殖、细胞凋亡和转移。在宫颈癌中也检测到miR-150水平升高,但其在癌症进展中的功能尚未研究。将miRNA-150在宫颈癌组织中的表达与正常宫颈组织进行比较,并采用qRT-PCR进行比较。分别采用流式细胞术、TUNEL法、qRT-PCR和Western blot检测miR-150对细胞周期和凋亡的影响,以及周期和凋亡相关基因的表达。使用3 '非翻译区(UTR)荧光素酶报告基因试验确认miR-150的直接靶点。miR-150促进宫颈癌细胞的存活和生长,而miR-150的抑制则抑制了这些作用。miR-150还诱导细胞周期从G1/G0期进展到S期,从而促进生长。miR-150可调节多个细胞周期和凋亡相关基因CyclinD1、p27、BIM和FASL。此外,miR-150通过靶向其3 ' UTR直接降低FOXO4的表达,FOXO4调节CyclinD1、p27、BIM和FASL的表达。综上所述,我们的数据表明miR-150升高靶向FOXO4的表达,从而调节多个基因的表达,导致宫颈癌细胞的生长和存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4

Dysregulation of microRNA-150 (miR-150) is commonly observed in solid tumor and has been reported to be involved in multiple important biological processes, such as cell proliferation, apoptosis, and metastasis. Elevated miR-150 level was also detected in cervical carcinoma, whereas its function in cancer progression has not been studied yet.

The expression of miRNA-150 in cervical carcinoma was compared with normal cervical tissue and using qRT-PCR. The effects of miR-150 on cell cycle and apoptosis, as well as the expression of cycle- and apoptosis-related genes, were determined using flow cytometry, TUNEL assay, qRT-PCR, and Western blot, respectively. The direct target of miR-150 was confirmed using 3′ untranslated region (UTR) luciferase reporter assay.

miR-150 promotes cervical cancer cell survival and growth, while the inhibition of miR-150 suppresses these actions. miR-150 also induced the cell cycle progression from G1/G0 to S phase, resulting in an enhancement of growth. Several cell cycle- and apoptosis-related genes, CyclinD1, p27, BIM, and FASL were modulated by miR-150. Moreover, miR-150 directly reduced the expression of FOXO4, which regulates the expression of CyclinD1, p27, BIM, and FASL, by targeting its 3′ UTR.

Taken together, our data demonstrated that elevated miR-150 targets FOXO4 expression and therefore regulates multiple genes expression, resulting in cervical cancer cell growth and survival.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Molecular Biology
BMC Molecular Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: BMC Molecular Biology is an open access journal publishing original peer-reviewed research articles in all aspects of DNA and RNA in a cellular context, encompassing investigations of chromatin, replication, recombination, mutation, repair, transcription, translation and RNA processing and function.
期刊最新文献
PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism The effect of BACE1-AS on β-amyloid generation by regulating BACE1 mRNA expression Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1 Correction to: A protocol for custom CRISPR Cas9 donor vector construction to truncate genes in mammalian cells using pcDNA3 backbone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1