Jun Li, Lina Hu, Chao Tian, Feng Lu, Jia Wu, Li Liu
{"title":"microRNA-150通过靶向FOXO4促进宫颈癌细胞的生长和存活","authors":"Jun Li, Lina Hu, Chao Tian, Feng Lu, Jia Wu, Li Liu","doi":"10.1186/s12867-015-0052-6","DOIUrl":null,"url":null,"abstract":"<p>Dysregulation of microRNA-150 (miR-150) is commonly observed in solid tumor and has been reported to be involved in multiple important biological processes, such as cell proliferation, apoptosis, and metastasis. Elevated miR-150 level was also detected in cervical carcinoma, whereas its function in cancer progression has not been studied yet.</p><p>The expression of miRNA-150 in cervical carcinoma was compared with normal cervical tissue and using qRT-PCR. The effects of miR-150 on cell cycle and apoptosis, as well as the expression of cycle- and apoptosis-related genes, were determined using flow cytometry, TUNEL assay, qRT-PCR, and Western blot, respectively. The direct target of miR-150 was confirmed using 3′ untranslated region (UTR) luciferase reporter assay.</p><p>miR-150 promotes cervical cancer cell survival and growth, while the inhibition of miR-150 suppresses these actions. miR-150 also induced the cell cycle progression from G1/G0 to S phase, resulting in an enhancement of growth. Several cell cycle- and apoptosis-related genes, CyclinD1, p27, BIM, and FASL were modulated by miR-150. Moreover, miR-150 directly reduced the expression of FOXO4, which regulates the expression of CyclinD1, p27, BIM, and FASL, by targeting its 3′ UTR.</p><p>Taken together, our data demonstrated that elevated miR-150 targets FOXO4 expression and therefore regulates multiple genes expression, resulting in cervical cancer cell growth and survival.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"16 1","pages":""},"PeriodicalIF":2.9460,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-015-0052-6","citationCount":"68","resultStr":"{\"title\":\"microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4\",\"authors\":\"Jun Li, Lina Hu, Chao Tian, Feng Lu, Jia Wu, Li Liu\",\"doi\":\"10.1186/s12867-015-0052-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dysregulation of microRNA-150 (miR-150) is commonly observed in solid tumor and has been reported to be involved in multiple important biological processes, such as cell proliferation, apoptosis, and metastasis. Elevated miR-150 level was also detected in cervical carcinoma, whereas its function in cancer progression has not been studied yet.</p><p>The expression of miRNA-150 in cervical carcinoma was compared with normal cervical tissue and using qRT-PCR. The effects of miR-150 on cell cycle and apoptosis, as well as the expression of cycle- and apoptosis-related genes, were determined using flow cytometry, TUNEL assay, qRT-PCR, and Western blot, respectively. The direct target of miR-150 was confirmed using 3′ untranslated region (UTR) luciferase reporter assay.</p><p>miR-150 promotes cervical cancer cell survival and growth, while the inhibition of miR-150 suppresses these actions. miR-150 also induced the cell cycle progression from G1/G0 to S phase, resulting in an enhancement of growth. Several cell cycle- and apoptosis-related genes, CyclinD1, p27, BIM, and FASL were modulated by miR-150. Moreover, miR-150 directly reduced the expression of FOXO4, which regulates the expression of CyclinD1, p27, BIM, and FASL, by targeting its 3′ UTR.</p><p>Taken together, our data demonstrated that elevated miR-150 targets FOXO4 expression and therefore regulates multiple genes expression, resulting in cervical cancer cell growth and survival.</p>\",\"PeriodicalId\":497,\"journal\":{\"name\":\"BMC Molecular Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9460,\"publicationDate\":\"2015-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12867-015-0052-6\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12867-015-0052-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s12867-015-0052-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4
Dysregulation of microRNA-150 (miR-150) is commonly observed in solid tumor and has been reported to be involved in multiple important biological processes, such as cell proliferation, apoptosis, and metastasis. Elevated miR-150 level was also detected in cervical carcinoma, whereas its function in cancer progression has not been studied yet.
The expression of miRNA-150 in cervical carcinoma was compared with normal cervical tissue and using qRT-PCR. The effects of miR-150 on cell cycle and apoptosis, as well as the expression of cycle- and apoptosis-related genes, were determined using flow cytometry, TUNEL assay, qRT-PCR, and Western blot, respectively. The direct target of miR-150 was confirmed using 3′ untranslated region (UTR) luciferase reporter assay.
miR-150 promotes cervical cancer cell survival and growth, while the inhibition of miR-150 suppresses these actions. miR-150 also induced the cell cycle progression from G1/G0 to S phase, resulting in an enhancement of growth. Several cell cycle- and apoptosis-related genes, CyclinD1, p27, BIM, and FASL were modulated by miR-150. Moreover, miR-150 directly reduced the expression of FOXO4, which regulates the expression of CyclinD1, p27, BIM, and FASL, by targeting its 3′ UTR.
Taken together, our data demonstrated that elevated miR-150 targets FOXO4 expression and therefore regulates multiple genes expression, resulting in cervical cancer cell growth and survival.
期刊介绍:
BMC Molecular Biology is an open access journal publishing original peer-reviewed research articles in all aspects of DNA and RNA in a cellular context, encompassing investigations of chromatin, replication, recombination, mutation, repair, transcription, translation and RNA processing and function.