{"title":"氰化物与四硫酸盐反应生成硫氰酸盐的动力学","authors":"Irina Kurashova, Alexey Kamyshny Jr.","doi":"10.1007/s10498-020-09385-9","DOIUrl":null,"url":null,"abstract":"<p>In aquatic systems a reaction between tetrathionate and cyanide results in the formation of thiocyanate. We have studied kinetics of the reactions of tetrathionate with free cyanide and two cyanide complexes, hexacyanoferrate(II) and hexacyanoferrate(III), at the environmentally relevant conditions. For the reaction between tetrathionate and free cyanide, the rate constant and the activation energy, but not the reaction order, strongly depend on pH. Our observations allow to propose the following pathways of thiocyanate formation by the reactions of free cyanide with tetrathionate: (1) tetrathionate reacts relatively slow with hydrogen cyanide at acidic and neutral conditions; and (2) tetrathionate reacts relatively fast with cyanide anion under highly alkaline conditions. Depending on environmental conditions, the half-lives of the reaction between free cyanide and tetrathionate will be in the ranges of hours to several years. Reactions of tetrathionate with hexacyanoferrate(II) and hexacyanoferrate(III) have no environmental significance as they are slower than the decomposition of tetrathionate. Strategy for improvement of analytical protocols for analysis of tetrathionate and cyanide is proposed based on the detected kinetics parameters.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"27 1","pages":"63 - 77"},"PeriodicalIF":1.7000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09385-9","citationCount":"1","resultStr":"{\"title\":\"Kinetics of Thiocyanate Formation by Reaction of Cyanide with Tetrathionate\",\"authors\":\"Irina Kurashova, Alexey Kamyshny Jr.\",\"doi\":\"10.1007/s10498-020-09385-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In aquatic systems a reaction between tetrathionate and cyanide results in the formation of thiocyanate. We have studied kinetics of the reactions of tetrathionate with free cyanide and two cyanide complexes, hexacyanoferrate(II) and hexacyanoferrate(III), at the environmentally relevant conditions. For the reaction between tetrathionate and free cyanide, the rate constant and the activation energy, but not the reaction order, strongly depend on pH. Our observations allow to propose the following pathways of thiocyanate formation by the reactions of free cyanide with tetrathionate: (1) tetrathionate reacts relatively slow with hydrogen cyanide at acidic and neutral conditions; and (2) tetrathionate reacts relatively fast with cyanide anion under highly alkaline conditions. Depending on environmental conditions, the half-lives of the reaction between free cyanide and tetrathionate will be in the ranges of hours to several years. Reactions of tetrathionate with hexacyanoferrate(II) and hexacyanoferrate(III) have no environmental significance as they are slower than the decomposition of tetrathionate. Strategy for improvement of analytical protocols for analysis of tetrathionate and cyanide is proposed based on the detected kinetics parameters.</p>\",\"PeriodicalId\":8102,\"journal\":{\"name\":\"Aquatic Geochemistry\",\"volume\":\"27 1\",\"pages\":\"63 - 77\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10498-020-09385-9\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10498-020-09385-9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-020-09385-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Kinetics of Thiocyanate Formation by Reaction of Cyanide with Tetrathionate
In aquatic systems a reaction between tetrathionate and cyanide results in the formation of thiocyanate. We have studied kinetics of the reactions of tetrathionate with free cyanide and two cyanide complexes, hexacyanoferrate(II) and hexacyanoferrate(III), at the environmentally relevant conditions. For the reaction between tetrathionate and free cyanide, the rate constant and the activation energy, but not the reaction order, strongly depend on pH. Our observations allow to propose the following pathways of thiocyanate formation by the reactions of free cyanide with tetrathionate: (1) tetrathionate reacts relatively slow with hydrogen cyanide at acidic and neutral conditions; and (2) tetrathionate reacts relatively fast with cyanide anion under highly alkaline conditions. Depending on environmental conditions, the half-lives of the reaction between free cyanide and tetrathionate will be in the ranges of hours to several years. Reactions of tetrathionate with hexacyanoferrate(II) and hexacyanoferrate(III) have no environmental significance as they are slower than the decomposition of tetrathionate. Strategy for improvement of analytical protocols for analysis of tetrathionate and cyanide is proposed based on the detected kinetics parameters.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.