基于核主成分分析的机载时域电磁数据去噪方法

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS 地球物理学报 Pub Date : 2014-01-01 DOI:10.1002/CJG2.20087
Chen Bin, Lu Cong-de, Liu Guang-ding
{"title":"基于核主成分分析的机载时域电磁数据去噪方法","authors":"Chen Bin, Lu Cong-de, Liu Guang-ding","doi":"10.1002/CJG2.20087","DOIUrl":null,"url":null,"abstract":"Airborne time-domain electromagnetic (ATEM) data usually contain natural and cultural noise, which can lower data quality, influence inversion accuracy or even lead to incorrect interpretation if it is not removed from data using an appropriate filter. To solve this problem, this work suggests a denosing method based on kernel principal component analysis. Firstly, it extracts the principal component from stacked decay curves. Then the useful signals, which are associated with subsurface media, and noise are separated using the energy ratio. Finally, these signals are used to perform reconstruction. This method can not only remove natural noise such as spikes or oscillation caused by sferies, but also effectively suppress cultural noise. Using this method and the AeroTEM software, the real ATEM data from a helicopter survey is processed separately. Comparison of the results shows that the denoising effect of the method suggested by this paper is superior to that of the AeroTEM software.","PeriodicalId":55257,"journal":{"name":"地球物理学报","volume":"57 1","pages":"103-111"},"PeriodicalIF":1.6000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CJG2.20087","citationCount":"10","resultStr":"{\"title\":\"A Denoising Method Based on Kernel Principal Component Analysis for Airborne Time‐Domain Electromagnetic Data\",\"authors\":\"Chen Bin, Lu Cong-de, Liu Guang-ding\",\"doi\":\"10.1002/CJG2.20087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airborne time-domain electromagnetic (ATEM) data usually contain natural and cultural noise, which can lower data quality, influence inversion accuracy or even lead to incorrect interpretation if it is not removed from data using an appropriate filter. To solve this problem, this work suggests a denosing method based on kernel principal component analysis. Firstly, it extracts the principal component from stacked decay curves. Then the useful signals, which are associated with subsurface media, and noise are separated using the energy ratio. Finally, these signals are used to perform reconstruction. This method can not only remove natural noise such as spikes or oscillation caused by sferies, but also effectively suppress cultural noise. Using this method and the AeroTEM software, the real ATEM data from a helicopter survey is processed separately. Comparison of the results shows that the denoising effect of the method suggested by this paper is superior to that of the AeroTEM software.\",\"PeriodicalId\":55257,\"journal\":{\"name\":\"地球物理学报\",\"volume\":\"57 1\",\"pages\":\"103-111\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CJG2.20087\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"地球物理学报\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/CJG2.20087\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"地球物理学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/CJG2.20087","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 10

摘要

机载时域电磁(ATEM)数据通常包含自然和文化噪声,如果不使用适当的滤波器将其从数据中去除,可能会降低数据质量,影响反演精度,甚至导致错误的解释。为了解决这一问题,本文提出了一种基于核主成分分析的去噪方法。首先,从叠加的衰减曲线中提取主成分;然后利用能量比分离与地下介质相关的有用信号和噪声。最后,利用这些信号进行重构。该方法既能去除序列引起的尖峰或振荡等自然噪声,又能有效地抑制文化噪声。利用该方法和AeroTEM软件,分别对直升机测量的实际ATEM数据进行处理。结果表明,本文方法的去噪效果优于AeroTEM软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Denoising Method Based on Kernel Principal Component Analysis for Airborne Time‐Domain Electromagnetic Data
Airborne time-domain electromagnetic (ATEM) data usually contain natural and cultural noise, which can lower data quality, influence inversion accuracy or even lead to incorrect interpretation if it is not removed from data using an appropriate filter. To solve this problem, this work suggests a denosing method based on kernel principal component analysis. Firstly, it extracts the principal component from stacked decay curves. Then the useful signals, which are associated with subsurface media, and noise are separated using the energy ratio. Finally, these signals are used to perform reconstruction. This method can not only remove natural noise such as spikes or oscillation caused by sferies, but also effectively suppress cultural noise. Using this method and the AeroTEM software, the real ATEM data from a helicopter survey is processed separately. Comparison of the results shows that the denoising effect of the method suggested by this paper is superior to that of the AeroTEM software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
地球物理学报
地球物理学报 地学-地球化学与地球物理
CiteScore
3.40
自引率
28.60%
发文量
9449
审稿时长
7.5 months
期刊介绍:
期刊最新文献
A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Speech habits Nouns Verbs Paragraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1