{"title":"模拟废水中萘脱除纳米纤维素的合成","authors":"Pooja Ranwala, Jitender Pal, Vinod Kumar Garg, Shakuntala Rani","doi":"10.1007/s11696-023-02919-9","DOIUrl":null,"url":null,"abstract":"<div><p>Polycyclic aromatic hydrocarbons are one among the strenuous problems of indemnity of hydrosphere brought on by the unintended release of refractory chemicals into the environment. Naphthalene has been removed from aqueous solution using various adsorbents, such as activated carbon, graphene oxide, etc in yesteryears. This study describes the synthesis of nanocellulose from rice husk and its application for the removal of naphthalene from simulated wastewater. To characterize the synthesized nanocellulose, SEM, TEM, BET, FTIR, XRD, zeta potential, AFM, TGA, DSC, and EDX techniques were used. The nanocellulose surface area was 1.152 m<sup>2</sup> g<sup>−1</sup>. The experiments were conducted in batch mode to investigate the impact of various operating conditions on naphthalene adsorption. Maximum removal of naphthalene was at pH 2 within 150 min. The experimental data were subjected to various models, viz., thermodynamic, kinetic, and isotherm models. Error analysis confirmed that the pseudo second-order equation and Langmuir model fitted well to the experimental data. The maximum removal of the naphthalene was ~80%. The desorption and reusability efficiency of nanocellulose was also evaluated. According to this study, nanocellulose has a higher potential for naphthalene removal due to the presence of active sites.</p></div>","PeriodicalId":55265,"journal":{"name":"Chemical Papers","volume":"77 10","pages":"6029 - 6039"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of nanocellulose for the removal of naphthalene from simulated wastewater\",\"authors\":\"Pooja Ranwala, Jitender Pal, Vinod Kumar Garg, Shakuntala Rani\",\"doi\":\"10.1007/s11696-023-02919-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polycyclic aromatic hydrocarbons are one among the strenuous problems of indemnity of hydrosphere brought on by the unintended release of refractory chemicals into the environment. Naphthalene has been removed from aqueous solution using various adsorbents, such as activated carbon, graphene oxide, etc in yesteryears. This study describes the synthesis of nanocellulose from rice husk and its application for the removal of naphthalene from simulated wastewater. To characterize the synthesized nanocellulose, SEM, TEM, BET, FTIR, XRD, zeta potential, AFM, TGA, DSC, and EDX techniques were used. The nanocellulose surface area was 1.152 m<sup>2</sup> g<sup>−1</sup>. The experiments were conducted in batch mode to investigate the impact of various operating conditions on naphthalene adsorption. Maximum removal of naphthalene was at pH 2 within 150 min. The experimental data were subjected to various models, viz., thermodynamic, kinetic, and isotherm models. Error analysis confirmed that the pseudo second-order equation and Langmuir model fitted well to the experimental data. The maximum removal of the naphthalene was ~80%. The desorption and reusability efficiency of nanocellulose was also evaluated. According to this study, nanocellulose has a higher potential for naphthalene removal due to the presence of active sites.</p></div>\",\"PeriodicalId\":55265,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"77 10\",\"pages\":\"6029 - 6039\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-023-02919-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-023-02919-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of nanocellulose for the removal of naphthalene from simulated wastewater
Polycyclic aromatic hydrocarbons are one among the strenuous problems of indemnity of hydrosphere brought on by the unintended release of refractory chemicals into the environment. Naphthalene has been removed from aqueous solution using various adsorbents, such as activated carbon, graphene oxide, etc in yesteryears. This study describes the synthesis of nanocellulose from rice husk and its application for the removal of naphthalene from simulated wastewater. To characterize the synthesized nanocellulose, SEM, TEM, BET, FTIR, XRD, zeta potential, AFM, TGA, DSC, and EDX techniques were used. The nanocellulose surface area was 1.152 m2 g−1. The experiments were conducted in batch mode to investigate the impact of various operating conditions on naphthalene adsorption. Maximum removal of naphthalene was at pH 2 within 150 min. The experimental data were subjected to various models, viz., thermodynamic, kinetic, and isotherm models. Error analysis confirmed that the pseudo second-order equation and Langmuir model fitted well to the experimental data. The maximum removal of the naphthalene was ~80%. The desorption and reusability efficiency of nanocellulose was also evaluated. According to this study, nanocellulose has a higher potential for naphthalene removal due to the presence of active sites.
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.