太阳风作为湍流实验室

IF 23 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Living Reviews in Solar Physics Pub Date : 2013-05-29 DOI:10.12942/lrsp-2013-2
Roberto Bruno, Vincenzo Carbone
{"title":"太阳风作为湍流实验室","authors":"Roberto Bruno,&nbsp;Vincenzo Carbone","doi":"10.12942/lrsp-2013-2","DOIUrl":null,"url":null,"abstract":"<p>In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses’ high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites) and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"10 1","pages":""},"PeriodicalIF":23.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2013-2","citationCount":"1026","resultStr":"{\"title\":\"The Solar Wind as a Turbulence Laboratory\",\"authors\":\"Roberto Bruno,&nbsp;Vincenzo Carbone\",\"doi\":\"10.12942/lrsp-2013-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses’ high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites) and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.</p>\",\"PeriodicalId\":687,\"journal\":{\"name\":\"Living Reviews in Solar Physics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":23.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.12942/lrsp-2013-2\",\"citationCount\":\"1026\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.12942/lrsp-2013-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.12942/lrsp-2013-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1026

摘要

在这篇综述中,我们将集中讨论一个对天体物理学和等离子体物理学都具有基本重要性的主题,即描述等离子体状态的场的大幅度低频波动的发生。这一主题将在太阳风扩张的背景下进行讨论,并将报告这一研究领域中最有意义的进展,重点是过去十年左右取得的结果。事实上,太阳神号的内部日球层和尤利西斯号的高纬度观测、最近多航天器对太阳风的测量(群集四颗卫星)以及基于复杂系统动力学的解决问题的新数值方法,带来了新的重要见解,有助于更好地理解太阳风中的湍流波动行为。特别是,磁流体动力学(MHD)湍流理论领域内的数值模拟揭示了湍流产生和能量在波动谱域内传递的物理机制。换句话说,过去几年在太阳风湍流研究方面取得的进展,现在提供了一个相当完整的问题现象学方面的画面,暂时以一种相当有机的方式提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Solar Wind as a Turbulence Laboratory

In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses’ high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites) and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Living Reviews in Solar Physics
Living Reviews in Solar Physics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
41.90
自引率
1.40%
发文量
3
审稿时长
20 weeks
期刊介绍: Living Reviews in Solar Physics is a peer-reviewed, full open access, and exclusively online journal, publishing freely available reviews of research in all areas of solar and heliospheric physics. Articles are solicited from leading authorities and are directed towards the scientific community at or above the graduate-student level. The articles in Living Reviews provide critical reviews of the current state of research in the fields they cover. They evaluate existing work, place it in a meaningful context, and suggest areas where more work and new results are needed. Articles also offer annotated insights into the key literature and describe other available resources. Living Reviews is unique in maintaining a suite of high-quality reviews, which are kept up-to-date by the authors. This is the meaning of the word "living" in the journal''s title.
期刊最新文献
Stellar flares Machine learning in solar physics Models for the long-term variations of solar activity A history of solar activity over millennia Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1