A. V. Sosunov, Manthila Rajapakse, G. A. Rudakov, R. S. Ponomarev, V. K. Henner, Jacek B. Jasinski, Dominika A. Buchberger, Md. Shamim Reza, Bhupendra Karki, Gamini Sumanasekera
{"title":"微孔碳/聚苯胺复合材料的赝电容","authors":"A. V. Sosunov, Manthila Rajapakse, G. A. Rudakov, R. S. Ponomarev, V. K. Henner, Jacek B. Jasinski, Dominika A. Buchberger, Md. Shamim Reza, Bhupendra Karki, Gamini Sumanasekera","doi":"10.3103/S1068375522010124","DOIUrl":null,"url":null,"abstract":"<p>High capacity (>200 F/g) supercapacitor electrodes have been fabricated by blending high surface area microporous carbon and polyaniline. The incorporation of a conducting polymer is expected to stabilize the microporous graphitic layers to form a conductive porous composite to increase the capacitance. Well-organized nano- and micropores are believed to facilitate rapid ion diffusion especially when the micropore size is comparable to the ionic radii in the electrolyte solution thereby greatly boosting the capacitance. The initial capacitance of ~110 F/g of the microporous carbon network was found to increase to ~224 F/g (>100% increase) after the incorporation of polyaniline in the 1 M H<sub>2</sub>SO<sub>4</sub> aqueous electrolyte. The non-linear behavior in the charge/discharge galvanostatic curve and the appearance of additional redox peaks in the capacitance-voltage curves confirm the presence of pseudocapacitance in the microporous carbon/ polyaniline composite in addition to the electrical double layer capacitance of pristine microporous carbon. The composite material shows the capacitance retention percentage over 80% after 1000 cycles implying a promise for novel supercapacitors with long-lasting ultra-high capacitance and power density.</p>","PeriodicalId":49315,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"58 1","pages":"87 - 93"},"PeriodicalIF":1.1000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pseudocapacitance of Microporous Carbon/Polyaniline Composites\",\"authors\":\"A. V. Sosunov, Manthila Rajapakse, G. A. Rudakov, R. S. Ponomarev, V. K. Henner, Jacek B. Jasinski, Dominika A. Buchberger, Md. Shamim Reza, Bhupendra Karki, Gamini Sumanasekera\",\"doi\":\"10.3103/S1068375522010124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High capacity (>200 F/g) supercapacitor electrodes have been fabricated by blending high surface area microporous carbon and polyaniline. The incorporation of a conducting polymer is expected to stabilize the microporous graphitic layers to form a conductive porous composite to increase the capacitance. Well-organized nano- and micropores are believed to facilitate rapid ion diffusion especially when the micropore size is comparable to the ionic radii in the electrolyte solution thereby greatly boosting the capacitance. The initial capacitance of ~110 F/g of the microporous carbon network was found to increase to ~224 F/g (>100% increase) after the incorporation of polyaniline in the 1 M H<sub>2</sub>SO<sub>4</sub> aqueous electrolyte. The non-linear behavior in the charge/discharge galvanostatic curve and the appearance of additional redox peaks in the capacitance-voltage curves confirm the presence of pseudocapacitance in the microporous carbon/ polyaniline composite in addition to the electrical double layer capacitance of pristine microporous carbon. The composite material shows the capacitance retention percentage over 80% after 1000 cycles implying a promise for novel supercapacitors with long-lasting ultra-high capacitance and power density.</p>\",\"PeriodicalId\":49315,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"58 1\",\"pages\":\"87 - 93\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375522010124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375522010124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1
摘要
采用高表面积微孔碳与聚苯胺混合制备了高容量(200f /g)超级电容器电极。导电聚合物的掺入有望稳定微孔石墨层以形成导电多孔复合材料以增加电容。组织良好的纳米和微孔被认为可以促进离子的快速扩散,特别是当微孔的大小与电解质溶液中的离子半径相当时,从而大大提高了电容。在1 M H2SO4水溶液中加入聚苯胺后,微孔碳网的初始电容从~110 F/g增加到~224 F/g(提高了100%)。充放电恒流曲线的非线性行为和电容电压曲线中额外氧化还原峰的出现证实了微孔碳/聚苯胺复合材料中除了原始微孔碳的双电层电容外,还存在伪电容。在1000次循环后,复合材料的电容保持率超过80%,这意味着具有持久超高电容和功率密度的新型超级电容器的前景。
Pseudocapacitance of Microporous Carbon/Polyaniline Composites
High capacity (>200 F/g) supercapacitor electrodes have been fabricated by blending high surface area microporous carbon and polyaniline. The incorporation of a conducting polymer is expected to stabilize the microporous graphitic layers to form a conductive porous composite to increase the capacitance. Well-organized nano- and micropores are believed to facilitate rapid ion diffusion especially when the micropore size is comparable to the ionic radii in the electrolyte solution thereby greatly boosting the capacitance. The initial capacitance of ~110 F/g of the microporous carbon network was found to increase to ~224 F/g (>100% increase) after the incorporation of polyaniline in the 1 M H2SO4 aqueous electrolyte. The non-linear behavior in the charge/discharge galvanostatic curve and the appearance of additional redox peaks in the capacitance-voltage curves confirm the presence of pseudocapacitance in the microporous carbon/ polyaniline composite in addition to the electrical double layer capacitance of pristine microporous carbon. The composite material shows the capacitance retention percentage over 80% after 1000 cycles implying a promise for novel supercapacitors with long-lasting ultra-high capacitance and power density.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.