微孔碳/聚苯胺复合材料的赝电容

IF 1.1 Q4 ELECTROCHEMISTRY Surface Engineering and Applied Electrochemistry Pub Date : 2022-03-29 DOI:10.3103/S1068375522010124
A. V. Sosunov, Manthila Rajapakse, G. A. Rudakov, R. S. Ponomarev, V. K. Henner, Jacek B. Jasinski, Dominika A. Buchberger, Md. Shamim Reza, Bhupendra Karki, Gamini Sumanasekera
{"title":"微孔碳/聚苯胺复合材料的赝电容","authors":"A. V. Sosunov,&nbsp;Manthila Rajapakse,&nbsp;G. A. Rudakov,&nbsp;R. S. Ponomarev,&nbsp;V. K. Henner,&nbsp;Jacek B. Jasinski,&nbsp;Dominika A. Buchberger,&nbsp;Md. Shamim Reza,&nbsp;Bhupendra Karki,&nbsp;Gamini Sumanasekera","doi":"10.3103/S1068375522010124","DOIUrl":null,"url":null,"abstract":"<p>High capacity (&gt;200 F/g) supercapacitor electrodes have been fabricated by blending high surface area microporous carbon and polyaniline. The incorporation of a conducting polymer is expected to stabilize the microporous graphitic layers to form a conductive porous composite to increase the capacitance. Well-organized nano- and micropores are believed to facilitate rapid ion diffusion especially when the micropore size is comparable to the ionic radii in the electrolyte solution thereby greatly boosting the capacitance. The initial capacitance of ~110 F/g of the microporous carbon network was found to increase to ~224 F/g (&gt;100% increase) after the incorporation of polyaniline in the 1 M H<sub>2</sub>SO<sub>4</sub> aqueous electrolyte. The non-linear behavior in the charge/discharge galvanostatic curve and the appearance of additional redox peaks in the capacitance-voltage curves confirm the presence of pseudocapacitance in the microporous carbon/ polyaniline composite in addition to the electrical double layer capacitance of pristine microporous carbon. The composite material shows the capacitance retention percentage over 80% after 1000 cycles implying a promise for novel supercapacitors with long-lasting ultra-high capacitance and power density.</p>","PeriodicalId":49315,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"58 1","pages":"87 - 93"},"PeriodicalIF":1.1000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pseudocapacitance of Microporous Carbon/Polyaniline Composites\",\"authors\":\"A. V. Sosunov,&nbsp;Manthila Rajapakse,&nbsp;G. A. Rudakov,&nbsp;R. S. Ponomarev,&nbsp;V. K. Henner,&nbsp;Jacek B. Jasinski,&nbsp;Dominika A. Buchberger,&nbsp;Md. Shamim Reza,&nbsp;Bhupendra Karki,&nbsp;Gamini Sumanasekera\",\"doi\":\"10.3103/S1068375522010124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High capacity (&gt;200 F/g) supercapacitor electrodes have been fabricated by blending high surface area microporous carbon and polyaniline. The incorporation of a conducting polymer is expected to stabilize the microporous graphitic layers to form a conductive porous composite to increase the capacitance. Well-organized nano- and micropores are believed to facilitate rapid ion diffusion especially when the micropore size is comparable to the ionic radii in the electrolyte solution thereby greatly boosting the capacitance. The initial capacitance of ~110 F/g of the microporous carbon network was found to increase to ~224 F/g (&gt;100% increase) after the incorporation of polyaniline in the 1 M H<sub>2</sub>SO<sub>4</sub> aqueous electrolyte. The non-linear behavior in the charge/discharge galvanostatic curve and the appearance of additional redox peaks in the capacitance-voltage curves confirm the presence of pseudocapacitance in the microporous carbon/ polyaniline composite in addition to the electrical double layer capacitance of pristine microporous carbon. The composite material shows the capacitance retention percentage over 80% after 1000 cycles implying a promise for novel supercapacitors with long-lasting ultra-high capacitance and power density.</p>\",\"PeriodicalId\":49315,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"58 1\",\"pages\":\"87 - 93\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375522010124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375522010124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

摘要

采用高表面积微孔碳与聚苯胺混合制备了高容量(200f /g)超级电容器电极。导电聚合物的掺入有望稳定微孔石墨层以形成导电多孔复合材料以增加电容。组织良好的纳米和微孔被认为可以促进离子的快速扩散,特别是当微孔的大小与电解质溶液中的离子半径相当时,从而大大提高了电容。在1 M H2SO4水溶液中加入聚苯胺后,微孔碳网的初始电容从~110 F/g增加到~224 F/g(提高了100%)。充放电恒流曲线的非线性行为和电容电压曲线中额外氧化还原峰的出现证实了微孔碳/聚苯胺复合材料中除了原始微孔碳的双电层电容外,还存在伪电容。在1000次循环后,复合材料的电容保持率超过80%,这意味着具有持久超高电容和功率密度的新型超级电容器的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pseudocapacitance of Microporous Carbon/Polyaniline Composites

High capacity (>200 F/g) supercapacitor electrodes have been fabricated by blending high surface area microporous carbon and polyaniline. The incorporation of a conducting polymer is expected to stabilize the microporous graphitic layers to form a conductive porous composite to increase the capacitance. Well-organized nano- and micropores are believed to facilitate rapid ion diffusion especially when the micropore size is comparable to the ionic radii in the electrolyte solution thereby greatly boosting the capacitance. The initial capacitance of ~110 F/g of the microporous carbon network was found to increase to ~224 F/g (>100% increase) after the incorporation of polyaniline in the 1 M H2SO4 aqueous electrolyte. The non-linear behavior in the charge/discharge galvanostatic curve and the appearance of additional redox peaks in the capacitance-voltage curves confirm the presence of pseudocapacitance in the microporous carbon/ polyaniline composite in addition to the electrical double layer capacitance of pristine microporous carbon. The composite material shows the capacitance retention percentage over 80% after 1000 cycles implying a promise for novel supercapacitors with long-lasting ultra-high capacitance and power density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.70
自引率
22.20%
发文量
54
审稿时长
6 months
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
期刊最新文献
Features of Electrodeless Electrochemical Reactions On Some Peculiarities of Implementation of Instability of Flat Charged Surface of Electroconductive Liquid Voltammetric Determination of Dopamine in the Presence of Caffeine Using a Modified Glassy Carbon Electrode Application of Optical Emission Spectroscopy for Predicting the Composition of Films in Reactive Magnetron Sputtering of Ti–Al Composite Targets Electrolyte-Plasma Nitriding of Austenitic Stainless Steel under Cathodic and Anodic Polarity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1