{"title":"分段连续函数近似的高维模型表示","authors":"R. Chowdhury, B. N. Rao, A. M. Prasad","doi":"10.1002/CNM.1053","DOIUrl":null,"url":null,"abstract":"High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"1587-1609"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1053","citationCount":"54","resultStr":"{\"title\":\"High dimensional model representation for piece‐wise continuous function approximation\",\"authors\":\"R. Chowdhury, B. N. Rao, A. M. Prasad\",\"doi\":\"10.1002/CNM.1053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"24 1\",\"pages\":\"1587-1609\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1053\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
High dimensional model representation for piece‐wise continuous function approximation
High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.