分段连续函数近似的高维模型表示

R. Chowdhury, B. N. Rao, A. M. Prasad
{"title":"分段连续函数近似的高维模型表示","authors":"R. Chowdhury, B. N. Rao, A. M. Prasad","doi":"10.1002/CNM.1053","DOIUrl":null,"url":null,"abstract":"High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"1587-1609"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1053","citationCount":"54","resultStr":"{\"title\":\"High dimensional model representation for piece‐wise continuous function approximation\",\"authors\":\"R. Chowdhury, B. N. Rao, A. M. Prasad\",\"doi\":\"10.1002/CNM.1053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"24 1\",\"pages\":\"1587-1609\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1053\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

高维模型表示(HDMR)以这样一种方式逼近多元函数,即近似值的分量函数从常数开始排序,随着我们继续进行一阶,二阶等项,逐渐接近多方差。到目前为止,HDMR的应用包括直接从实验室/现场数据构建计算模型,创建高效的全等效操作模型以取代现有耗时的数学模型,识别关键模型变量,全局不确定性评估,高效的定量风险评估等。本文探讨了HDMR在处理单变量和多变量分段连续函数方面的潜力。给出了八个数值例子来说明HDMR用等价连续函数逼近单变量或多变量分段连续函数的性能。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High dimensional model representation for piece‐wise continuous function approximation
High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An innovative prone positioning system for advanced deformity and frailty in complex spine surgery. Optimization of anastomotic configuration in CABG surgery Comparative study between two numerical methods for oxygen diffusion problem Optimal stress recovery points for higher-order bar elements by Prathap's best-fit method A stabilized smoothed finite element method for free vibration analysis of Mindlin–Reissner plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1