Y Katsumura , Y Tabata, T Seguchi, N Hayakawa, K Yoshida, N Tamura
{"title":"快中子辐照效应——ⅰ。剂量测定法","authors":"Y Katsumura , Y Tabata, T Seguchi, N Hayakawa, K Yoshida, N Tamura","doi":"10.1016/0146-5724(85)90188-8","DOIUrl":null,"url":null,"abstract":"<div><p>A dosimetry of mixed field, neutron and γ-ray, has been carried out by the activation method in a fast neutron source reactor “YAYOI,” which has been used for the study of fast neutron irradiation effects on organic materials and microorganisms. Neutron flux and energy distribution were obtained by an unfolding calculation based on the activation analysis. Absorbed dose was determined as a function of the distance from the center of the reactor core in a hole called “Glory Hole” used for irradiation of various materials. Contribution of absorbed dose from γ-rays coexisting with neutron was evaluated by measuring peroxide radicals formed in irradiated polytetrafluoroethylene, PTFE, which is insensitive to the neutron component. After evaluating the radiation field, relative sensitivities of popular dosimeters such as red acrylate, radiachromic, and alanine dosimeter for last neutron irradiation were determined by comparison with <sup>60</sup>Co γ-ray irradiation. Characteristics of the mixed field dosimetry and LET effect of recoil protons in samples at different neutron fields are discussed.</p></div>","PeriodicalId":101054,"journal":{"name":"Radiation Physics and Chemistry (1977)","volume":"26 2","pages":"Pages 211-220"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0146-5724(85)90188-8","citationCount":"15","resultStr":"{\"title\":\"Fast neutron irradiation effects—I. Dosimetry\",\"authors\":\"Y Katsumura , Y Tabata, T Seguchi, N Hayakawa, K Yoshida, N Tamura\",\"doi\":\"10.1016/0146-5724(85)90188-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A dosimetry of mixed field, neutron and γ-ray, has been carried out by the activation method in a fast neutron source reactor “YAYOI,” which has been used for the study of fast neutron irradiation effects on organic materials and microorganisms. Neutron flux and energy distribution were obtained by an unfolding calculation based on the activation analysis. Absorbed dose was determined as a function of the distance from the center of the reactor core in a hole called “Glory Hole” used for irradiation of various materials. Contribution of absorbed dose from γ-rays coexisting with neutron was evaluated by measuring peroxide radicals formed in irradiated polytetrafluoroethylene, PTFE, which is insensitive to the neutron component. After evaluating the radiation field, relative sensitivities of popular dosimeters such as red acrylate, radiachromic, and alanine dosimeter for last neutron irradiation were determined by comparison with <sup>60</sup>Co γ-ray irradiation. Characteristics of the mixed field dosimetry and LET effect of recoil protons in samples at different neutron fields are discussed.</p></div>\",\"PeriodicalId\":101054,\"journal\":{\"name\":\"Radiation Physics and Chemistry (1977)\",\"volume\":\"26 2\",\"pages\":\"Pages 211-220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0146-5724(85)90188-8\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Physics and Chemistry (1977)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0146572485901888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry (1977)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0146572485901888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dosimetry of mixed field, neutron and γ-ray, has been carried out by the activation method in a fast neutron source reactor “YAYOI,” which has been used for the study of fast neutron irradiation effects on organic materials and microorganisms. Neutron flux and energy distribution were obtained by an unfolding calculation based on the activation analysis. Absorbed dose was determined as a function of the distance from the center of the reactor core in a hole called “Glory Hole” used for irradiation of various materials. Contribution of absorbed dose from γ-rays coexisting with neutron was evaluated by measuring peroxide radicals formed in irradiated polytetrafluoroethylene, PTFE, which is insensitive to the neutron component. After evaluating the radiation field, relative sensitivities of popular dosimeters such as red acrylate, radiachromic, and alanine dosimeter for last neutron irradiation were determined by comparison with 60Co γ-ray irradiation. Characteristics of the mixed field dosimetry and LET effect of recoil protons in samples at different neutron fields are discussed.