{"title":"加盐对三嵌段共聚物两性离子表面活性剂组装的影响:从激发态质子转移的见解。","authors":"Tapas Pal and Kalyanasis Sahu","doi":"10.1039/D3CP03388K","DOIUrl":null,"url":null,"abstract":"<p >Copolymer-surfactant assemblies are frequently utilized across various fields, from medicine to nanotechnology. Understanding the organization of the mixed assemblies in a saline environment will further expand their application horizons, especially under physiological conditions. Excited-state proton transfer (ESPT) can provide insight into the hydration nature and organization of the non-toxic assembly of a triblock copolymer F127 (poly-(ethylene oxide)<small><sub>101</sub></small> (PEO<small><sub>101</sub></small>)-poly(propylene oxide)<small><sub>56</sub></small> (PPO<small><sub>56</sub></small>)-PEO<small><sub>101</sub></small>)) and a zwitterionic sulfobetaine surfactant <em>N</em>-dodecyl-<em>N</em>,<em>N</em>-dimethyl-3-ammoniopropane sulfonate (SB12). Here, we present a comprehensive investigation of the compactness and hydration nature of the F127-SB12 mixed assemblies at different salt concentrations using the ESPT of 8-hydroxy pyrene-1,3,6-trisulfonate (HPTS). In the absence of salts, gradual SB12 addition to a premicellar (0.4 mM) or a post-micellar (4 mM) F127 solution leads to an anomalous modulation of the protonated and deprotonated emission bands. The emission intensity ratio (protonated/deprotonated) first increases to a maximum at a particular SB12 concentration (6 mM and 35 mM for the premicellar and post-micellar F127 assemblies, respectively), and then the ratio decreases with a further increase in the surfactant concentration. Since the intensity ratio is an indicator of the retardation of the ESPT process, the mixed micellar configuration displaying a maximum intensity ratio represents the most compact and least hydrated state. Salt addition to this configuration lowers the intensity ratio, signifying an enhanced ESPT process. Dynamic light scattering (DLS) results indicate that the size of the mixed assembly remains almost unaltered with the addition of salts. Thus, salinity enhances the ESPT process inside the F127-SB12 mixed assemblies without significantly altering the hydrodynamic radius.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 43","pages":" 29816-29830"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of salt addition on a triblock copolymer-zwitterionic surfactant assembly: insight from excited-state proton transfer†\",\"authors\":\"Tapas Pal and Kalyanasis Sahu\",\"doi\":\"10.1039/D3CP03388K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Copolymer-surfactant assemblies are frequently utilized across various fields, from medicine to nanotechnology. Understanding the organization of the mixed assemblies in a saline environment will further expand their application horizons, especially under physiological conditions. Excited-state proton transfer (ESPT) can provide insight into the hydration nature and organization of the non-toxic assembly of a triblock copolymer F127 (poly-(ethylene oxide)<small><sub>101</sub></small> (PEO<small><sub>101</sub></small>)-poly(propylene oxide)<small><sub>56</sub></small> (PPO<small><sub>56</sub></small>)-PEO<small><sub>101</sub></small>)) and a zwitterionic sulfobetaine surfactant <em>N</em>-dodecyl-<em>N</em>,<em>N</em>-dimethyl-3-ammoniopropane sulfonate (SB12). Here, we present a comprehensive investigation of the compactness and hydration nature of the F127-SB12 mixed assemblies at different salt concentrations using the ESPT of 8-hydroxy pyrene-1,3,6-trisulfonate (HPTS). In the absence of salts, gradual SB12 addition to a premicellar (0.4 mM) or a post-micellar (4 mM) F127 solution leads to an anomalous modulation of the protonated and deprotonated emission bands. The emission intensity ratio (protonated/deprotonated) first increases to a maximum at a particular SB12 concentration (6 mM and 35 mM for the premicellar and post-micellar F127 assemblies, respectively), and then the ratio decreases with a further increase in the surfactant concentration. Since the intensity ratio is an indicator of the retardation of the ESPT process, the mixed micellar configuration displaying a maximum intensity ratio represents the most compact and least hydrated state. Salt addition to this configuration lowers the intensity ratio, signifying an enhanced ESPT process. Dynamic light scattering (DLS) results indicate that the size of the mixed assembly remains almost unaltered with the addition of salts. Thus, salinity enhances the ESPT process inside the F127-SB12 mixed assemblies without significantly altering the hydrodynamic radius.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 43\",\"pages\":\" 29816-29830\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03388k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03388k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of salt addition on a triblock copolymer-zwitterionic surfactant assembly: insight from excited-state proton transfer†
Copolymer-surfactant assemblies are frequently utilized across various fields, from medicine to nanotechnology. Understanding the organization of the mixed assemblies in a saline environment will further expand their application horizons, especially under physiological conditions. Excited-state proton transfer (ESPT) can provide insight into the hydration nature and organization of the non-toxic assembly of a triblock copolymer F127 (poly-(ethylene oxide)101 (PEO101)-poly(propylene oxide)56 (PPO56)-PEO101)) and a zwitterionic sulfobetaine surfactant N-dodecyl-N,N-dimethyl-3-ammoniopropane sulfonate (SB12). Here, we present a comprehensive investigation of the compactness and hydration nature of the F127-SB12 mixed assemblies at different salt concentrations using the ESPT of 8-hydroxy pyrene-1,3,6-trisulfonate (HPTS). In the absence of salts, gradual SB12 addition to a premicellar (0.4 mM) or a post-micellar (4 mM) F127 solution leads to an anomalous modulation of the protonated and deprotonated emission bands. The emission intensity ratio (protonated/deprotonated) first increases to a maximum at a particular SB12 concentration (6 mM and 35 mM for the premicellar and post-micellar F127 assemblies, respectively), and then the ratio decreases with a further increase in the surfactant concentration. Since the intensity ratio is an indicator of the retardation of the ESPT process, the mixed micellar configuration displaying a maximum intensity ratio represents the most compact and least hydrated state. Salt addition to this configuration lowers the intensity ratio, signifying an enhanced ESPT process. Dynamic light scattering (DLS) results indicate that the size of the mixed assembly remains almost unaltered with the addition of salts. Thus, salinity enhances the ESPT process inside the F127-SB12 mixed assemblies without significantly altering the hydrodynamic radius.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.